Spaces:
Sleeping
Sleeping
import streamlit as st | |
from dotenv import load_dotenv | |
import pickle | |
from huggingface_hub import Repository | |
from PyPDF2 import PdfReader | |
from streamlit_extras.add_vertical_space import add_vertical_space | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.embeddings.openai import OpenAIEmbeddings | |
from langchain.vectorstores import FAISS | |
from langchain.llms import OpenAI | |
from langchain.chains.question_answering import load_qa_chain | |
from langchain.callbacks import get_openai_callback | |
import os | |
# Step 1: Clone the Dataset Repository | |
repo = Repository( | |
local_dir="Private_Book", # Local directory to clone the repository | |
repo_type="dataset", # Specify that this is a dataset repository | |
clone_from="Anne31415/Private_Book", # Replace with your repository URL | |
token=os.environ["HUB_TOKEN"] # Use the secret token to authenticate | |
) | |
repo.git_pull() # Pull the latest changes (if any) | |
# Step 2: Load the PDF File | |
pdf_file_path = "Private_Book/Glossar_HELP_DESK_combi.pdf" # Replace with your PDF file path | |
# Sidebar contents | |
with st.sidebar: | |
st.title(':orange[BinDoc GmbH]') | |
st.markdown( | |
"Experience the future of document interaction with the revolutionary" | |
) | |
st.markdown("**BinDocs Chat App**.") | |
st.markdown("Harnessing the power of a Large Language Model and AI technology,") | |
st.markdown("this innovative platform redefines PDF engagement,") | |
st.markdown("enabling dynamic conversations that bridge the gap between") | |
st.markdown("human and machine intelligence.") | |
add_vertical_space(3) # Add more vertical space between text blocks | |
st.write('Made with ❤️ by BinDoc GmbH') | |
api_key = os.getenv("OPENAI_API_KEY") | |
# Retrieve the API key from st.secrets | |
def load_pdf(file_path): | |
pdf_reader = PdfReader(file_path) | |
text = "" | |
for page in pdf_reader.pages: | |
text += page.extract_text() | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=1000, | |
chunk_overlap=200, | |
length_function=len | |
) | |
chunks = text_splitter.split_text(text=text) | |
store_name, _ = os.path.splitext(os.path.basename(file_path)) | |
if os.path.exists(f"{store_name}.pkl"): | |
with open(f"{store_name}.pkl", "rb") as f: | |
VectorStore = pickle.load(f) | |
else: | |
embeddings = OpenAIEmbeddings() | |
VectorStore = FAISS.from_texts(chunks, embedding=embeddings) | |
with open(f"{store_name}.pkl", "wb") as f: | |
pickle.dump(VectorStore, f) | |
return VectorStore | |
def load_chatbot(): | |
return load_qa_chain(llm=OpenAI(), chain_type="stuff") | |
def main(): | |
st.title("BinDocs Chat App") | |
st.markdown( | |
"""🤖 Welcome to BinDocs ChatBot! 🤖 | |
Hello! I’m your friendly assistant, designed to help you navigate through our platform with ease. Here's a snapshot of what I can assist you with: | |
📘 **Glossary Inquiries:** | |
Having trouble understanding specific terms? Ask me! For instance, if you are unsure about what "Belegarzt" means, just type in “What is a Belegarzt?” and I will provide you with a detailed explanation based on our glossary. | |
🆘 **Help Page Navigation:** | |
I can guide you through our help page and answer your queries regarding any problems or inquiries you might have, such as “Forgot your Password?” or other platform-related concerns. | |
#### How to Interact: | |
Simply type in your question or concern, and I will do my best to assist you. Examples are shown at the bottom of this page. Try some out!""" | |
) | |
# Directly specifying the path to the PDF file | |
pdf_path = pdf_file_path | |
if not os.path.exists(pdf_path): | |
st.error("File not found. Please check the file path.") | |
return | |
if "chat_history" not in st.session_state: | |
st.session_state['chat_history'] = [] | |
display_chat_history(st.session_state['chat_history']) | |
st.write("<!-- Start Spacer -->", unsafe_allow_html=True) | |
st.write("<div style='flex: 1;'></div>", unsafe_allow_html=True) | |
st.write("<!-- End Spacer -->", unsafe_allow_html=True) | |
new_messages_placeholder = st.empty() | |
if pdf_path is not None: | |
query = st.text_input("Ask questions about your PDF file (in any preferred language):") | |
if st.button("Was genau ist ein Belegarzt?"): | |
query = "Was genau ist ein Belegarzt?" | |
if st.button("Wofür wird die Alpha-ID verwendet?"): | |
query = "Wofür wird die Alpha-ID verwendet?" | |
if st.button("Was sind die Vorteile des ambulanten operierens?"): | |
query = "Was sind die Vorteile des ambulanten operierens?" | |
if st.button("Was kann ich mit dem Prognose-Analyse Toll machen?"): | |
query = "Was kann ich mit dem Prognose-Analyse Toll machen?" | |
if st.button("Was sagt mir die Farbe der Balken der Bevölkerungsentwicklung?"): | |
query = "Was sagt mir die Farbe der Balken der Bevölkerungsentwicklung?" | |
if st.button("Ask") or (not st.session_state['chat_history'] and query) or (st.session_state['chat_history'] and query != st.session_state['chat_history'][-1][1]): | |
st.session_state['chat_history'].append(("User", query, "new")) | |
loading_message = st.empty() | |
loading_message.text('Bot is thinking...') | |
VectorStore = load_pdf(pdf_path) | |
chain = load_chatbot() | |
docs = VectorStore.similarity_search(query=query, k=3) | |
with get_openai_callback() as cb: | |
response = chain.run(input_documents=docs, question=query) | |
st.session_state['chat_history'].append(("Bot", response, "new")) | |
# Display new messages at the bottom | |
new_messages = st.session_state['chat_history'][-2:] | |
for chat in new_messages: | |
background_color = "#FFA07A" if chat[2] == "new" else "#acf" if chat[0] == "User" else "#caf" | |
new_messages_placeholder.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True) | |
# Scroll to the latest response using JavaScript | |
st.write("<script>document.getElementById('response').scrollIntoView();</script>", unsafe_allow_html=True) | |
loading_message.empty() | |
# Clear the input field by setting the query variable to an empty string | |
query = "" | |
# Mark all messages as old after displaying | |
st.session_state['chat_history'] = [(sender, msg, "old") for sender, msg, _ in st.session_state['chat_history']] | |
def display_chat_history(chat_history): | |
for chat in chat_history: | |
background_color = "#FFA07A" if chat[2] == "new" else "#acf" if chat[0] == "User" else "#caf" | |
st.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True) | |
if __name__ == "__main__": | |
main() |