Spaces:
Sleeping
Sleeping
import os | |
import pickle | |
from nltk.tokenize import sent_tokenize | |
import nltk | |
from PyPDF2 import PdfReader | |
import streamlit as st | |
from streamlit_extras.add_vertical_space import add_vertical_space | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.embeddings.openai import OpenAIEmbeddings | |
from langchain.vectorstores import FAISS | |
from langchain.llms import OpenAI | |
from langchain.chains.question_answering import load_qa_chain | |
from langchain.callbacks import get_openai_callback | |
nltk.download('punkt') | |
local_book = load_dataset("/Users/annedemond/Library/CloudStorage/OneDrive-BinDocGmbH/Data_Science_Projekte/Webscraping/PDF/Glossar_PDF_webscraping.pdf") | |
# Sidebar contents | |
with st.sidebar: | |
st.title(':orange_book: BinDoc GmbH') | |
api_key = os.getenv("OPENAI_API_KEY") | |
# Retrieve the API key from st.secrets | |
if not api_key: | |
st.warning('API key is required to proceed.') | |
st.stop() # Stop the app if the API key is not provided | |
st.markdown("Experience the future of document interaction with the revolutionary") | |
st.markdown("**BinDocs Chat App**.") | |
st.markdown("Harnessing the power of a Large Language Model and AI technology,") | |
st.markdown("this innovative platform redefines PDF engagement,") | |
st.markdown("enabling dynamic conversations that bridge the gap between") | |
st.markdown("human and machine intelligence.") | |
add_vertical_space(3) # Add more vertical space between text blocks | |
st.write('Made with ❤️ by BinDoc GmbH') | |
def load_pdf(file_path): | |
pdf_reader = PdfReader(file_path) | |
chunks = [] | |
for page in pdf_reader.pages: | |
text = page.extract_text() | |
if text: | |
chunks.append(text) | |
store_name = file_path.name[:-4] | |
if os.path.exists(f"{store_name}.pkl"): | |
with open(f"{store_name}.pkl", "rb") as f: | |
VectorStore = pickle.load(f) | |
else: | |
embeddings = OpenAIEmbeddings() | |
VectorStore = FAISS.from_texts(chunks, embedding=embeddings) | |
with open(f"{store_name}.pkl", "wb") as f: | |
pickle.dump(VectorStore, f) | |
return VectorStore | |
def load_chatbot(max_tokens=300): | |
return load_qa_chain(llm=OpenAI(temperature=0.1, max_tokens=max_tokens), chain_type="stuff") | |
def display_chat_history(chat_history): | |
for chat in chat_history: | |
background_color = "#FFA07A" if chat[2] == "new" else "#acf" if chat[0] == "User" else "#caf" | |
st.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True) | |
def remove_incomplete_sentences(text): | |
sentences = sent_tokenize(text) | |
complete_sentences = [sent for sent in sentences if sent.endswith(('.', '!', '?'))] | |
return ' '.join(complete_sentences) | |
def remove_redundant_information(text): | |
sentences = sent_tokenize(text) | |
unique_sentences = list(set(sentences)) | |
return ' '.join(unique_sentences) | |
# Define a maximum token limit to avoid infinite loops | |
MAX_TOKEN_LIMIT = 400 | |
def main(): | |
st.title("BinDocs Chat App") | |
if "chat_history" not in st.session_state: | |
st.session_state['chat_history'] = [] | |
display_chat_history(st.session_state['chat_history']) | |
st.write("<!-- Start Spacer -->", unsafe_allow_html=True) | |
st.write("<div style='flex: 1;'></div>", unsafe_allow_html=True) | |
st.write("<!-- End Spacer -->", unsafe_allow_html=True) | |
new_messages_placeholder = st.empty() | |
pdf = st.file_uploader("Upload your PDF", type="pdf") | |
if pdf is not None: | |
query = st.text_input("Ask questions about your PDF file (in any preferred language):") | |
if st.button("Ask") or (query and query != st.session_state.get('last_input', '')): | |
st.session_state['last_input'] = query | |
st.session_state['chat_history'].append(("User", query, "new")) | |
loading_message = st.empty() | |
loading_message.text('Bot is thinking...') | |
VectorStore = load_pdf(pdf) | |
max_tokens = 120 | |
chain = load_chatbot(max_tokens=max_tokens) | |
docs = VectorStore.similarity_search(query=query, k=2) | |
with get_openai_callback() as cb: | |
response = chain.run(input_documents=docs, question=query) | |
# Post-processing to remove incomplete sentences and redundant information | |
filtered_response = remove_incomplete_sentences(response) | |
filtered_response = remove_redundant_information(filtered_response) | |
# Check if the response ends with a sentence-ending punctuation | |
while not filtered_response.strip().endswith(('.', '!', '?')) and max_tokens < MAX_TOKEN_LIMIT: | |
max_tokens += 100 # Increase the max_tokens limit | |
chain = load_chatbot(max_tokens=max_tokens) | |
additional_response = chain.run(input_documents=docs, question=query) | |
filtered_response += additional_response # Append the additional response to the filtered_response | |
st.session_state['chat_history'].append(("Bot", filtered_response, "new")) | |
# Display new messages at the bottom | |
new_messages = st.session_state['chat_history'][-2:] | |
for chat in new_messages: | |
background_color = "#FFA07A" if chat[2] == "new" else "#acf" if chat[0] == "User" else "#caf" | |
new_messages_placeholder.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True) | |
# Scroll to the latest response using JavaScript | |
st.write("<script>document.getElementById('response').scrollIntoView();</script>", unsafe_allow_html=True) | |
loading_message.empty() | |
# Clear the input field by setting the query variable to an empty string | |
query = "" | |
# Mark all messages as old after displaying | |
st.session_state['chat_history'] = [(sender, msg, "old") for sender, msg, _ in st.session_state['chat_history']] | |
if __name__ == "__main__": | |
main() | |