import streamlit as st from dotenv import load_dotenv import pickle from PyPDF2 import PdfReader from streamlit_extras.add_vertical_space import add_vertical_space from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings.openai import OpenAIEmbeddings from langchain.vectorstores import FAISS from langchain.llms import OpenAI from langchain.chains.question_answering import load_qa_chain from langchain.callbacks import get_openai_callback import os # Sidebar contents with st.sidebar: st.title(':orange[BinDoc GmbH]') st.markdown( "Experience the future of document interaction with the revolutionary" ) st.markdown("**BinDocs Chat App**.") st.markdown("Harnessing the power of a Large Language Model and AI technology,") st.markdown("this innovative platform redefines PDF engagement,") st.markdown("enabling dynamic conversations that bridge the gap between") st.markdown("human and machine intelligence.") add_vertical_space(3) # Add more vertical space between text blocks st.write('Made with ❤️ by Anne') openai_api_key = st.text_input("Enter your OpenAI API key:") pdf_path = None # Initialize pdf_path as None def load_pdf(file_path): pdf_reader = PdfReader(file_path) text = "" for page in pdf_reader.pages: text += page.extract_text() text_splitter = RecursiveCharacterTextSplitter( chunk_size=1000, chunk_overlap=200, length_function=len ) chunks = text_splitter.split_text(text=text) store_name, _ = os.path.splitext(os.path.basename(file_path)) if os.path.exists(f"{store_name}.pkl"): with open(f"{store_name}.pkl", "rb") as f: VectorStore = pickle.load(f) else: embeddings = OpenAIEmbeddings() VectorStore = FAISS.from_texts(chunks, embedding=embeddings) with open(f"{store_name}.pkl", "wb") as f: pickle.dump(VectorStore, f) return VectorStore def load_chatbot(openai_api_key): openai_config = { "api_key": openai_api_key } return load_qa_chain(llm=OpenAI(config=openai_config), chain_type="stuff") def main(): st.title("BinDocs Chat App") uploaded_pdf = st.file_uploader("Upload a PDF file:", type=["pdf"]) if uploaded_pdf is not None: pdf_path = uploaded_pdf if "chat_history" not in st.session_state: st.session_state['chat_history'] = [] display_chat_history(st.session_state['chat_history']) st.write("", unsafe_allow_html=True) st.write("
", unsafe_allow_html=True) st.write("", unsafe_allow_html=True) new_messages_placeholder = st.empty() if pdf_path is not None: query = st.text_input("Ask questions about your PDF file (in any preferred language):") if st.button("Ask") or (not st.session_state['chat_history'] and query) or (st.session_state['chat_history'] and query != st.session_state['chat_history'][-1][1]): st.session_state['chat_history'].append(("User", query, "new")) loading_message = st.empty() loading_message.text('Bot is thinking...') VectorStore = load_pdf(pdf_path) chain = load_chatbot() docs = VectorStore.similarity_search(query=query, k=3) with get_openai_callback() as cb: response = chain.run(input_documents=docs, question=query) st.session_state['chat_history'].append(("Bot", response, "new")) # Display new messages at the bottom new_messages = st.session_state['chat_history'][-2:] for chat in new_messages: background_color = "#FFA07A" if chat[2] == "new" else "#acf" if chat[0] == "User" else "#caf" new_messages_placeholder.markdown(f"
{chat[0]}: {chat[1]}
", unsafe_allow_html=True) # Scroll to the latest response using JavaScript st.write("", unsafe_allow_html=True) loading_message.empty() # Clear the input field by setting the query variable to an empty string query = "" # Mark all messages as old after displaying st.session_state['chat_history'] = [(sender, msg, "old") for sender, msg, _ in st.session_state['chat_history']] def display_chat_history(chat_history): for chat in chat_history: background_color = "#FFA07A" if chat[2] == "new" else "#acf" if chat[0] == "User" else "#caf" st.markdown(f"
{chat[0]}: {chat[1]}
", unsafe_allow_html=True) if __name__ == "__main__": main()