|
import os |
|
from huggingface_hub import Repository |
|
import streamlit.components.v1 as components |
|
from datasets import load_dataset |
|
import random |
|
import pickle |
|
from nltk.tokenize import sent_tokenize |
|
import nltk |
|
from PyPDF2 import PdfReader |
|
import streamlit as st |
|
from streamlit_extras.add_vertical_space import add_vertical_space |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
from langchain.embeddings.openai import OpenAIEmbeddings |
|
from langchain.vectorstores import FAISS |
|
from langchain.llms import OpenAI |
|
from langchain.chains.question_answering import load_qa_chain |
|
from langchain.callbacks import get_openai_callback |
|
from my_component import my_component |
|
|
|
nltk.download('punkt') |
|
|
|
|
|
repo = Repository( |
|
local_dir="Private_Book", |
|
repo_type="dataset", |
|
|
|
clone_from="Anne31415/Private_Book", |
|
|
|
token=os.environ["HUB_TOKEN"] |
|
) |
|
repo.git_pull() |
|
|
|
|
|
pdf_file_path = "Private_Book/Glossar_PDF_webscraping.pdf" |
|
|
|
|
|
|
|
with st.sidebar: |
|
st.title(':orange_book: BinDoc GmbH') |
|
|
|
|
|
api_key = os.getenv("OPENAI_API_KEY") |
|
|
|
|
|
|
|
if not api_key: |
|
st.warning('API key is required to proceed.') |
|
st.stop() |
|
|
|
st.markdown("Experience the future of document interaction with the revolutionary") |
|
st.markdown("**BinDocs Chat App**.") |
|
st.markdown("Harnessing the power of a Large Language Model and AI technology,") |
|
st.markdown("this innovative platform redefines PDF engagement,") |
|
st.markdown("enabling dynamic conversations that bridge the gap between") |
|
st.markdown("human and machine intelligence.") |
|
|
|
add_vertical_space(3) |
|
st.write('Made with ❤️ by BinDoc GmbH') |
|
|
|
def load_pdf(file_path): |
|
pdf_reader = PdfReader(file_path) |
|
chunks = [] |
|
for page in pdf_reader.pages: |
|
text = page.extract_text() |
|
if text: |
|
chunks.append(text) |
|
|
|
store_name = os.path.basename(file_path)[:-4] |
|
|
|
if os.path.exists(f"{store_name}.pkl"): |
|
with open(f"{store_name}.pkl", "rb") as f: |
|
VectorStore = pickle.load(f) |
|
else: |
|
embeddings = OpenAIEmbeddings() |
|
VectorStore = FAISS.from_texts(chunks, embedding=embeddings) |
|
with open(f"{store_name}.pkl", "wb") as f: |
|
pickle.dump(VectorStore, f) |
|
|
|
return VectorStore |
|
|
|
|
|
def load_chatbot(max_tokens=300): |
|
return load_qa_chain(llm=OpenAI(temperature=0.1, max_tokens=max_tokens), chain_type="stuff") |
|
|
|
|
|
def display_chat_history(chat_history): |
|
for chat in chat_history: |
|
background_color = "#FFA07A" if chat[2] == "new" else "#acf" if chat[0] == "User" else "#caf" |
|
st.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True) |
|
|
|
def remove_incomplete_sentences(text): |
|
sentences = sent_tokenize(text) |
|
complete_sentences = [sent for sent in sentences if sent.endswith(('.', '!', '?'))] |
|
return ' '.join(complete_sentences) |
|
|
|
def remove_redundant_information(text): |
|
sentences = sent_tokenize(text) |
|
unique_sentences = list(set(sentences)) |
|
return ' '.join(unique_sentences) |
|
|
|
|
|
MAX_TOKEN_LIMIT = 400 |
|
|
|
import random |
|
|
|
|
|
def main(): |
|
st.title("BinDocs Chat App") |
|
|
|
if "chat_history" not in st.session_state: |
|
st.session_state['chat_history'] = [] |
|
|
|
display_chat_history(st.session_state['chat_history']) |
|
|
|
new_messages_placeholder = st.empty() |
|
|
|
query = st.text_input("Ask questions about your PDF file (in any preferred language):") |
|
|
|
if st.button("Was genau ist ein Belegarzt?"): |
|
query = "Was genau ist ein Belegarzt?" |
|
if st.button("Wofür wird die Alpha-ID verwendet?"): |
|
query = "Wofür wird die Alpha-ID verwendet?" |
|
if st.button("Was sind die Vorteile des ambulanten operierens?"): |
|
query = "Was sind die Vorteile des ambulanten operierens?" |
|
|
|
if query: |
|
st.session_state['last_input'] = query |
|
st.session_state['chat_history'].append(("User", query, "new")) |
|
|
|
loading_message = st.empty() |
|
loading_message.text('Bot is thinking...') |
|
|
|
VectorStore = load_pdf(pdf_file_path) |
|
max_tokens = 120 |
|
chain = load_chatbot(max_tokens=max_tokens) |
|
docs = VectorStore.similarity_search(query=query, k=2) |
|
|
|
with get_openai_callback() as cb: |
|
response = chain.run(input_documents=docs, question=query) |
|
|
|
|
|
filtered_response = remove_incomplete_sentences(response) |
|
filtered_response = remove_redundant_information(filtered_response) |
|
|
|
st.session_state['chat_history'].append(("Bot", filtered_response, "new")) |
|
|
|
new_messages = st.session_state['chat_history'][-2:] |
|
for chat in new_messages: |
|
background_color = "#FFA07A" if chat[2] == "new" else "#acf" if chat[0] == "User" else "#caf" |
|
new_messages_placeholder.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True) |
|
|
|
st.write("<script>document.getElementById('response').scrollIntoView();</script>", unsafe_allow_html=True) |
|
|
|
loading_message.empty() |
|
|
|
query = "" |
|
else: |
|
st.warning("Please enter a query before asking questions.") |
|
|
|
st.session_state['chat_history'] = [(sender, msg, "old") for sender, msg, _ in st.session_state['chat_history']] |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|