File size: 3,370 Bytes
97266bf
 
 
2a9ec14
 
 
 
 
 
 
 
 
 
 
 
3ffc7cc
 
 
2a9ec14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40efd3f
 
 
 
2a9ec14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25869c0
2a9ec14
 
 
97266bf
 
2a9ec14
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
from peft import PeftModel
from typing import Dict, Any

class LlamaInterface:
    def __init__(
        self,
        base_model_name: str = "meta-llama/Llama-3.2-1B",
        lora_model_name: str = "Anlam-Lab/Llama-3.2-1B-it-anlamlab-SA-Chatgpt4mini"
    ):
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        
        self.tokenizer = AutoTokenizer.from_pretrained(base_model_name)
        # Padding token'ı ayarla
        self.tokenizer.pad_token = self.tokenizer.eos_token
        
        self.model = AutoModelForCausalLM.from_pretrained(
            base_model_name,
            device_map="auto",
            torch_dtype=torch.float16
        )
        self.model = PeftModel.from_pretrained(self.model, lora_model_name)
        self.model.eval()

    def generate_response(self, input_text: str) -> str:
        if not input_text or not input_text.strip():
            return "Error: Please provide valid input text."

        try:
            inputs = self.tokenizer(
                input_text,
                return_tensors="pt",
                padding=True,
                truncation=True,
                max_length=512
            ).to(self.device)

            generation_config: Dict[str, Any] = {
                "max_length": 512,
                "temperature": 0.01,
                "do_sample": True,
                "pad_token_id": self.tokenizer.pad_token_id,
                "eos_token_id": self.tokenizer.eos_token_id,
                "num_return_sequences": 1,
                "top_k": 50,
                "top_p": 0.95,
            }

            with torch.no_grad():
                outputs = self.model.generate(**inputs, **generation_config)
            
            response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
            return response.split("<|end_header_id|>")[-1].split("<|eot_id|>")[0].strip()

        except Exception as e:
            return f"Error generating response: {str(e)}"

    def create_interface(self) -> gr.Interface:
        return gr.Interface(
            fn=self.generate_response,
            inputs=gr.Textbox(
                lines=5,
                placeholder="Metninizi buraya girin...",
                label="Giriş Metni"
            ),
            outputs=gr.Textbox(
                lines=5,
                label="Model Çıktısı"
            ),
            title="Anlam-Lab Duygu Analizi",
            description="Metin girişi yaparak duygu analizi sonucunu alabilirsiniz.",
            examples=[
                ["Akıllı saati uzun süre kullandım ve şık tasarımı, harika sağlık takibi özellikleri ve uzun pil ömrüyle çok memnun kaldım."],
                ["Ürünü aldım ama pil ömrü kısa, ekran parlaklığı yetersiz ve sağlık takibi doğru sonuçlar vermedi."],
            ],
            theme="default"
        )

def main():
    try:
        llama_interface = LlamaInterface()
        interface = llama_interface.create_interface()
        interface.launch(
            share=False,
            debug=True,
            server_name="0.0.0.0",
            server_port=7860
        )
    except Exception as e:
        print(f"Error launching interface: {str(e)}")
        raise

if __name__ == "__main__":
    main()