Spaces:
Sleeping
Sleeping
apahilaj
commited on
Commit
·
b11ca01
1
Parent(s):
d57785a
added history
Browse files
app.py
CHANGED
|
@@ -1,30 +1,16 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import pandas as pd
|
| 3 |
from langchain.embeddings import HuggingFaceEmbeddings
|
| 4 |
-
from langchain.vectorstores import
|
| 5 |
-
from langchain_community.llms import
|
| 6 |
-
from langchain.chains import LLMChain
|
| 7 |
-
from langchain_community.document_loaders.csv_loader import CSVLoader
|
| 8 |
from langchain_community.document_loaders import PyPDFLoader
|
| 9 |
-
from langchain.text_splitter import
|
| 10 |
-
from
|
| 11 |
-
from langchain_community import vectorstores
|
| 12 |
from langchain.prompts import PromptTemplate
|
| 13 |
-
from langchain.chains import RetrievalQA
|
| 14 |
from langchain.memory import ConversationBufferMemory
|
| 15 |
-
from langchain.chains import ConversationalRetrievalChain
|
| 16 |
-
from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter
|
| 17 |
-
from langchain.vectorstores import DocArrayInMemorySearch
|
| 18 |
-
from langchain.document_loaders import TextLoader
|
| 19 |
-
from langchain.chains import RetrievalQA, ConversationalRetrievalChain
|
| 20 |
-
from langchain.memory import ConversationBufferMemory
|
| 21 |
-
from langchain.chat_models import ChatOpenAI
|
| 22 |
-
from langchain.document_loaders import TextLoader
|
| 23 |
-
from langchain.document_loaders import PyPDFLoader
|
| 24 |
-
import panel as pn
|
| 25 |
-
import param
|
| 26 |
-
import re
|
| 27 |
import os
|
|
|
|
| 28 |
|
| 29 |
api_token = os.environ.get('HUGGINGFACEHUB_API_TOKEN')
|
| 30 |
|
|
@@ -67,19 +53,39 @@ def load_db(file, k):
|
|
| 67 |
retriever=retriever,
|
| 68 |
return_source_documents=True,
|
| 69 |
return_generated_question=True,
|
|
|
|
| 70 |
)
|
| 71 |
|
| 72 |
return qa
|
| 73 |
|
| 74 |
-
def
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
if match:
|
| 79 |
helpful_answer = match.group(1).strip()
|
| 80 |
-
return helpful_answer
|
| 81 |
else:
|
| 82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
iface.launch(share=True)
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import pandas as pd
|
| 3 |
from langchain.embeddings import HuggingFaceEmbeddings
|
| 4 |
+
from langchain.vectorstores import faiss
|
| 5 |
+
from langchain_community.llms import HuggingFaceHub
|
| 6 |
+
from langchain.chains import ConversationalRetrievalChain, LLMChain
|
|
|
|
| 7 |
from langchain_community.document_loaders import PyPDFLoader
|
| 8 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 9 |
+
from langchain import vectorstores
|
|
|
|
| 10 |
from langchain.prompts import PromptTemplate
|
|
|
|
| 11 |
from langchain.memory import ConversationBufferMemory
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
import os
|
| 13 |
+
import re
|
| 14 |
|
| 15 |
api_token = os.environ.get('HUGGINGFACEHUB_API_TOKEN')
|
| 16 |
|
|
|
|
| 53 |
retriever=retriever,
|
| 54 |
return_source_documents=True,
|
| 55 |
return_generated_question=True,
|
| 56 |
+
memory=memory,
|
| 57 |
)
|
| 58 |
|
| 59 |
return qa
|
| 60 |
|
| 61 |
+
def chat(input_text, pdf_file):
|
| 62 |
+
qa = load_db(pdf_file, 3)
|
| 63 |
+
|
| 64 |
+
if not memory.memory:
|
| 65 |
+
# If no previous conversation, start with a greeting
|
| 66 |
+
response = qa.invoke({"question": "Hi, how can I help you today?", "chat_history": []})
|
| 67 |
+
memory.update(response["chat_history"])
|
| 68 |
+
|
| 69 |
+
response = qa.invoke({"question": input_text, "chat_history": memory.memory})
|
| 70 |
+
|
| 71 |
+
# Extracting the helpful answer from the response
|
| 72 |
+
match = re.search(r'Helpful Answer:(.*)', response['answer'])
|
| 73 |
if match:
|
| 74 |
helpful_answer = match.group(1).strip()
|
|
|
|
| 75 |
else:
|
| 76 |
+
helpful_answer = "No helpful answer found."
|
| 77 |
+
|
| 78 |
+
# Update the chat history
|
| 79 |
+
memory.update([(input_text, helpful_answer)])
|
| 80 |
+
|
| 81 |
+
# Combine relevant information into a single string for output
|
| 82 |
+
output_text = f"Question: {input_text}\nAnswer: {helpful_answer}\nGenerated Question: {response['generated_question']}\nSource Documents: {response['source_documents']}"
|
| 83 |
|
| 84 |
+
return output_text
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
iface = gr.Interface(fn=chat, inputs=["text", "file"], outputs="text")
|
| 89 |
iface.launch(share=True)
|
| 90 |
+
|
| 91 |
+
|