apahilaj commited on
Commit
75f200e
·
1 Parent(s): 0e35643
Files changed (1) hide show
  1. app.py +31 -32
app.py CHANGED
@@ -1,24 +1,33 @@
1
  import gradio as gr
2
  import pandas as pd
3
  from langchain.embeddings import HuggingFaceEmbeddings
4
- from langchain.vectorstores import faiss
5
- from langchain_community.llms import HuggingFaceHub
6
- from langchain.chains import ConversationalRetrievalChain, LLMChain
 
7
  from langchain_community.document_loaders import PyPDFLoader
8
- from langchain.text_splitter import RecursiveCharacterTextSplitter
9
- from langchain import vectorstores
 
10
  from langchain.prompts import PromptTemplate
 
11
  from langchain.memory import ConversationBufferMemory
12
- import os
 
 
 
 
 
 
 
 
 
 
13
  import re
 
14
 
15
  api_token = os.environ.get('HUGGINGFACEHUB_API_TOKEN')
16
 
17
- memory = ConversationBufferMemory(
18
- memory_key="chat_history",
19
- return_messages=True
20
- )
21
-
22
  model = HuggingFaceHub(
23
  huggingfacehub_api_token=api_token,
24
  repo_id="mistralai/Mistral-7B-Instruct-v0.2",
@@ -53,34 +62,24 @@ def load_db(file, k):
53
  retriever=retriever,
54
  return_source_documents=True,
55
  return_generated_question=True,
56
- memory=memory,
57
  )
58
 
59
  return qa
60
 
61
- def chat(input_text, pdf_file):
62
- qa = load_db(pdf_file, 3)
63
- print("MEMORY")
64
- print(memory)
65
- if not memory.history:
66
- # If no previous conversation, start with a greeting
67
- response = qa.invoke({"question": "Hi, how can I help you today?", "chat_history": []})
68
- memory.update(response["chat_history"])
69
 
70
- response = qa.invoke({"question": input_text, "chat_history": memory.history})
71
-
72
- # Extracting the helpful answer from the response
73
- match = re.search(r'Helpful Answer:(.*)', response['answer'])
 
74
  if match:
75
  helpful_answer = match.group(1).strip()
 
 
 
76
  else:
77
- helpful_answer = "No helpful answer found."
78
-
79
- # Update the chat history
80
- memory.update([(input_text, helpful_answer)])
81
-
82
- return helpful_answer
83
-
84
 
85
- iface = gr.Interface(fn=chat, inputs=["text", "file"], outputs="text")
86
  iface.launch(share=True)
 
1
  import gradio as gr
2
  import pandas as pd
3
  from langchain.embeddings import HuggingFaceEmbeddings
4
+ from langchain.vectorstores import Chroma, faiss
5
+ from langchain_community.llms import HuggingFaceEndpoint, HuggingFaceHub
6
+ from langchain.chains import LLMChain
7
+ from langchain_community.document_loaders.csv_loader import CSVLoader
8
  from langchain_community.document_loaders import PyPDFLoader
9
+ from langchain.text_splitter import CharacterTextSplitter
10
+ from langchain_community.document_loaders import TextLoader
11
+ from langchain_community import vectorstores
12
  from langchain.prompts import PromptTemplate
13
+ from langchain.chains import RetrievalQA
14
  from langchain.memory import ConversationBufferMemory
15
+ from langchain.chains import ConversationalRetrievalChain
16
+ from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter
17
+ from langchain.vectorstores import DocArrayInMemorySearch
18
+ from langchain.document_loaders import TextLoader
19
+ from langchain.chains import RetrievalQA, ConversationalRetrievalChain
20
+ from langchain.memory import ConversationBufferMemory
21
+ from langchain.chat_models import ChatOpenAI
22
+ from langchain.document_loaders import TextLoader
23
+ from langchain.document_loaders import PyPDFLoader
24
+ import panel as pn
25
+ import param
26
  import re
27
+ import os
28
 
29
  api_token = os.environ.get('HUGGINGFACEHUB_API_TOKEN')
30
 
 
 
 
 
 
31
  model = HuggingFaceHub(
32
  huggingfacehub_api_token=api_token,
33
  repo_id="mistralai/Mistral-7B-Instruct-v0.2",
 
62
  retriever=retriever,
63
  return_source_documents=True,
64
  return_generated_question=True,
 
65
  )
66
 
67
  return qa
68
 
69
+ chat_history = [] # initialize chat history
 
 
 
 
 
 
 
70
 
71
+ def greet(question, pdf_file):
72
+ global chat_history
73
+ a = load_db(pdf_file, 3)
74
+ r = a.invoke({"question": question, "chat_history": chat_history})
75
+ match = re.search(r'Helpful Answer:(.*)', r['answer'])
76
  if match:
77
  helpful_answer = match.group(1).strip()
78
+ # Extend chat history with the current question and answer
79
+ chat_history.extend([(question, helpful_answer)])
80
+ return helpful_answer
81
  else:
82
+ return "No helpful answer found."
 
 
 
 
 
 
83
 
84
+ iface = gr.Interface(fn=greet, inputs=["text", "file"], outputs="text")
85
  iface.launch(share=True)