import torch import torch.nn.functional as F class LayerNorm(torch.nn.Module): def __init__(self, channels, eps=1e-5, onnx=False): super().__init__() self.channels = channels self.eps = eps self.onnx = onnx self.gamma = torch.nn.Parameter(torch.ones(channels)) self.beta = torch.nn.Parameter(torch.zeros(channels)) def forward(self, x): x = x.transpose(1, -1) return (F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps) if self.onnx else F.layer_norm(x, (x.size(-1),), self.gamma, self.beta, self.eps)).transpose(1, -1)