import os import sys import torch import numpy as np import torch.nn.functional as F from librosa.filters import mel sys.path.append(os.getcwd()) from main.library import opencl class STFT: def __init__(self, sr=22050, n_mels=80, n_fft=1024, win_size=1024, hop_length=256, fmin=20, fmax=11025, clip_val=1e-5): self.target_sr = sr self.n_mels = n_mels self.n_fft = n_fft self.win_size = win_size self.hop_length = hop_length self.fmin = fmin self.fmax = fmax self.clip_val = clip_val self.mel_basis = {} self.hann_window = {} def get_mel(self, y, keyshift=0, speed=1, center=False, train=False): n_fft = self.n_fft win_size = self.win_size hop_length = self.hop_length fmax = self.fmax factor = 2 ** (keyshift / 12) win_size_new = int(np.round(win_size * factor)) hop_length_new = int(np.round(hop_length * speed)) mel_basis = self.mel_basis if not train else {} hann_window = self.hann_window if not train else {} mel_basis_key = str(fmax) + "_" + str(y.device) if mel_basis_key not in mel_basis: mel_basis[mel_basis_key] = torch.from_numpy(mel(sr=self.target_sr, n_fft=n_fft, n_mels=self.n_mels, fmin=self.fmin, fmax=fmax)).float().to(y.device) keyshift_key = str(keyshift) + "_" + str(y.device) if keyshift_key not in hann_window: hann_window[keyshift_key] = torch.hann_window(win_size_new).to(y.device) pad_left = (win_size_new - hop_length_new) // 2 pad_right = max((win_size_new - hop_length_new + 1) // 2, win_size_new - y.size(-1) - pad_left) pad = F.pad(y.unsqueeze(1), (pad_left, pad_right), mode="reflect" if pad_right < y.size(-1) else "constant").squeeze(1) n_fft = int(np.round(n_fft * factor)) if str(y.device).startswith("ocl"): stft = opencl.STFT(filter_length=n_fft, hop_length=hop_length_new, win_length=win_size_new).to(y.device) spec = stft.transform(pad, 1e-9) else: spec = torch.stft(pad, n_fft, hop_length=hop_length_new, win_length=win_size_new, window=hann_window[keyshift_key], center=center, pad_mode="reflect", normalized=False, onesided=True, return_complex=True) spec = torch.sqrt(spec.real.pow(2) + spec.imag.pow(2) + 1e-9) if keyshift != 0: size = n_fft // 2 + 1 resize = spec.size(1) spec = (F.pad(spec, (0, 0, 0, size - resize)) if resize < size else spec[:, :size, :]) * win_size / win_size_new return torch.log(torch.clamp(torch.matmul(mel_basis[mel_basis_key], spec), min=self.clip_val) * 1)