import os import sys import torch import numpy as np import torch.utils.data as tdata sys.path.append(os.getcwd()) from main.app.variables import translations from main.inference.training.mel_processing import spectrogram_torch from main.inference.training.utils import load_filepaths_and_text, load_wav_to_torch class TextAudioLoaderMultiNSFsid(tdata.Dataset): def __init__(self, hparams, energy=False): self.audiopaths_and_text = load_filepaths_and_text(hparams.training_files) self.max_wav_value = hparams.max_wav_value self.sample_rate = hparams.sample_rate self.filter_length = hparams.filter_length self.hop_length = hparams.hop_length self.win_length = hparams.win_length self.sample_rate = hparams.sample_rate self.min_text_len = getattr(hparams, "min_text_len", 1) self.max_text_len = getattr(hparams, "max_text_len", 5000) self.energy = energy self._filter() def _filter(self): audiopaths_and_text_new, lengths = [], [] for item in self.audiopaths_and_text: audiopath = item[0] text = item[1] if self.min_text_len <= len(text) <= self.max_text_len: audiopaths_and_text_new.append(item) lengths.append(os.path.getsize(audiopath) // (3 * self.hop_length)) self.audiopaths_and_text = audiopaths_and_text_new self.lengths = lengths def get_sid(self, sid): try: sid = torch.LongTensor([int(sid)]) except ValueError: sid = torch.LongTensor([0]) return sid def get_audio_text_pair(self, audiopath_and_text): if self.energy: phone, pitch, pitchf, energy = self.get_labels(audiopath_and_text[1], audiopath_and_text[2], audiopath_and_text[3], audiopath_and_text[4]) spec, wav = self.get_audio(audiopath_and_text[0]) dv = self.get_sid(audiopath_and_text[5]) else: phone, pitch, pitchf, _ = self.get_labels(audiopath_and_text[1], audiopath_and_text[2], audiopath_and_text[3]) spec, wav = self.get_audio(audiopath_and_text[0]) dv = self.get_sid(audiopath_and_text[4]) len_phone = phone.size()[0] len_spec = spec.size()[-1] if len_phone != len_spec: len_min = min(len_phone, len_spec) len_wav = len_min * self.hop_length spec, wav, phone = spec[:, :len_min], wav[:, :len_wav], phone[:len_min, :] pitch, pitchf = pitch[:len_min], pitchf[:len_min] if self.energy: energy = energy[:len_min] return (spec, wav, phone, pitch, pitchf, dv, energy) if self.energy else (spec, wav, phone, pitch, pitchf, dv) def get_labels(self, phone, pitch, pitchf, energy=None): phone = np.repeat(np.load(phone), 2, axis=0) n_num = min(phone.shape[0], 900) return torch.FloatTensor(phone[:n_num, :]), torch.LongTensor(np.load(pitch)[:n_num]), torch.FloatTensor(np.load(pitchf)[:n_num]), torch.FloatTensor(np.load(energy)[:n_num]) if energy else None def get_audio(self, filename): audio, sample_rate = load_wav_to_torch(filename) if sample_rate != self.sample_rate: raise ValueError(translations["sr_does_not_match"].format(sample_rate=sample_rate, sample_rate2=self.sample_rate)) audio_norm = audio.unsqueeze(0) spec_filename = filename.replace(".wav", ".spec.pt") if os.path.exists(spec_filename): try: spec = torch.load(spec_filename, weights_only=True) except Exception: spec = torch.squeeze(spectrogram_torch(audio_norm, self.filter_length, self.hop_length, self.win_length, center=False), 0) torch.save(spec, spec_filename, _use_new_zipfile_serialization=False) else: spec = torch.squeeze(spectrogram_torch(audio_norm, self.filter_length, self.hop_length, self.win_length, center=False), 0) torch.save(spec, spec_filename, _use_new_zipfile_serialization=False) return spec, audio_norm def __getitem__(self, index): return self.get_audio_text_pair(self.audiopaths_and_text[index]) def __len__(self): return len(self.audiopaths_and_text) class TextAudioCollateMultiNSFsid: def __init__(self, return_ids=False, energy=False): self.return_ids = return_ids self.energy = energy def __call__(self, batch): _, ids_sorted_decreasing = torch.sort(torch.LongTensor([x[0].size(1) for x in batch]), dim=0, descending=True) spec_lengths, wave_lengths = torch.LongTensor(len(batch)), torch.LongTensor(len(batch)) spec_padded, wave_padded = torch.FloatTensor(len(batch), batch[0][0].size(0), max([x[0].size(1) for x in batch])), torch.FloatTensor(len(batch), 1, max([x[1].size(1) for x in batch])) spec_padded.zero_() wave_padded.zero_() max_phone_len = max([x[2].size(0) for x in batch]) phone_lengths, phone_padded = torch.LongTensor(len(batch)), torch.FloatTensor(len(batch), max_phone_len, batch[0][2].shape[1]) pitch_padded, pitchf_padded = torch.LongTensor(len(batch), max_phone_len), torch.FloatTensor(len(batch), max_phone_len) phone_padded.zero_() pitch_padded.zero_() pitchf_padded.zero_() sid = torch.LongTensor(len(batch)) if self.energy: energy_padded = torch.FloatTensor(len(batch), max_phone_len) energy_padded.zero_() for i in range(len(ids_sorted_decreasing)): row = batch[ids_sorted_decreasing[i]] spec = row[0] spec_padded[i, :, : spec.size(1)] = spec spec_lengths[i] = spec.size(1) wave = row[1] wave_padded[i, :, : wave.size(1)] = wave wave_lengths[i] = wave.size(1) phone = row[2] phone_padded[i, : phone.size(0), :] = phone phone_lengths[i] = phone.size(0) pitch = row[3] pitch_padded[i, : pitch.size(0)] = pitch pitchf = row[4] pitchf_padded[i, : pitchf.size(0)] = pitchf sid[i] = row[5] if self.energy: energy = row[6] energy_padded[i, : energy.size(0)] = energy return (phone_padded, phone_lengths, pitch_padded, pitchf_padded, spec_padded, spec_lengths, wave_padded, wave_lengths, sid, energy_padded) if self.energy else (phone_padded, phone_lengths, pitch_padded, pitchf_padded, spec_padded, spec_lengths, wave_padded, wave_lengths, sid) class TextAudioLoader(tdata.Dataset): def __init__(self, hparams, energy=False): self.audiopaths_and_text = load_filepaths_and_text(hparams.training_files) self.max_wav_value = hparams.max_wav_value self.sample_rate = hparams.sample_rate self.filter_length = hparams.filter_length self.hop_length = hparams.hop_length self.win_length = hparams.win_length self.sample_rate = hparams.sample_rate self.min_text_len = getattr(hparams, "min_text_len", 1) self.max_text_len = getattr(hparams, "max_text_len", 5000) self.energy = energy self._filter() def _filter(self): audiopaths_and_text_new, lengths = [], [] for item in self.audiopaths_and_text: audiopath = item[0] text = item[1] if self.min_text_len <= len(text) and len(text) <= self.max_text_len: audiopaths_and_text_new.append(item) lengths.append(os.path.getsize(audiopath) // (3 * self.hop_length)) self.audiopaths_and_text = audiopaths_and_text_new self.lengths = lengths def get_sid(self, sid): try: sid = torch.LongTensor([int(sid)]) except ValueError: sid = torch.LongTensor([0]) return sid def get_audio_text_pair(self, audiopath_and_text): if self.energy: phone, energy = self.get_labels(audiopath_and_text[1], audiopath_and_text[2]) spec, wav = self.get_audio(audiopath_and_text[0]) dv = self.get_sid(audiopath_and_text[3]) else: phone, _ = self.get_labels(audiopath_and_text[1]) spec, wav = self.get_audio(audiopath_and_text[0]) dv = self.get_sid(audiopath_and_text[2]) len_phone = phone.size()[0] len_spec = spec.size()[-1] if len_phone != len_spec: len_min = min(len_phone, len_spec) len_wav = len_min * self.hop_length spec = spec[:, :len_min] wav = wav[:, :len_wav] phone = phone[:len_min, :] if self.energy: energy = energy[:len_min] return (spec, wav, phone, dv, energy) if self.energy else (spec, wav, phone, dv) def get_labels(self, phone, energy=None): phone = np.repeat(np.load(phone), 2, axis=0) n_num = min(phone.shape[0], 900) return torch.FloatTensor(phone[:min(phone.shape[0], 900), :]), torch.FloatTensor(np.load(energy)[:n_num]) if energy else None def get_audio(self, filename): audio, sample_rate = load_wav_to_torch(filename) if sample_rate != self.sample_rate: raise ValueError(translations["sr_does_not_match"].format(sample_rate=sample_rate, sample_rate2=self.sample_rate)) audio_norm = audio.unsqueeze(0) spec_filename = filename.replace(".wav", ".spec.pt") if os.path.exists(spec_filename): try: spec = torch.load(spec_filename, weights_only=True) except Exception: spec = torch.squeeze(spectrogram_torch(audio_norm, self.filter_length, self.hop_length, self.win_length, center=False), 0) torch.save(spec, spec_filename, _use_new_zipfile_serialization=False) else: spec = torch.squeeze(spectrogram_torch(audio_norm, self.filter_length, self.hop_length, self.win_length, center=False), 0) torch.save(spec, spec_filename, _use_new_zipfile_serialization=False) return spec, audio_norm def __getitem__(self, index): return self.get_audio_text_pair(self.audiopaths_and_text[index]) def __len__(self): return len(self.audiopaths_and_text) class TextAudioCollate: def __init__(self, return_ids=False, energy=False): self.return_ids = return_ids self.energy = energy def __call__(self, batch): _, ids_sorted_decreasing = torch.sort(torch.LongTensor([x[0].size(1) for x in batch]), dim=0, descending=True) spec_lengths, wave_lengths = torch.LongTensor(len(batch)), torch.LongTensor(len(batch)) spec_padded, wave_padded = torch.FloatTensor(len(batch), batch[0][0].size(0), max([x[0].size(1) for x in batch])), torch.FloatTensor(len(batch), 1, max([x[1].size(1) for x in batch])) spec_padded.zero_() wave_padded.zero_() max_phone_len = max([x[2].size(0) for x in batch]) phone_lengths, phone_padded = torch.LongTensor(len(batch)), torch.FloatTensor(len(batch), max_phone_len, batch[0][2].shape[1]) phone_padded.zero_() sid = torch.LongTensor(len(batch)) if self.energy: energy_padded = torch.FloatTensor(len(batch), max_phone_len) energy_padded.zero_() for i in range(len(ids_sorted_decreasing)): row = batch[ids_sorted_decreasing[i]] spec = row[0] spec_padded[i, :, : spec.size(1)] = spec spec_lengths[i] = spec.size(1) wave = row[1] wave_padded[i, :, : wave.size(1)] = wave wave_lengths[i] = wave.size(1) phone = row[2] phone_padded[i, : phone.size(0), :] = phone phone_lengths[i] = phone.size(0) sid[i] = row[3] if self.energy: energy = row[4] energy_padded[i, : energy.size(0)] = energy return (phone_padded, phone_lengths, spec_padded, spec_lengths, wave_padded, wave_lengths, sid, energy_padded) if self.energy else (phone_padded, phone_lengths, spec_padded, spec_lengths, wave_padded, wave_lengths, sid) class DistributedBucketSampler(tdata.distributed.DistributedSampler): def __init__(self, dataset, batch_size, boundaries, num_replicas=None, rank=None, shuffle=True): super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle) self.lengths = dataset.lengths self.batch_size = batch_size self.boundaries = boundaries self.buckets, self.num_samples_per_bucket = self._create_buckets() self.total_size = sum(self.num_samples_per_bucket) self.num_samples = self.total_size // self.num_replicas def _create_buckets(self): buckets = [[] for _ in range(len(self.boundaries) - 1)] for i in range(len(self.lengths)): idx_bucket = self._bisect(self.lengths[i]) if idx_bucket != -1: buckets[idx_bucket].append(i) for i in range(len(buckets) - 1, -1, -1): if len(buckets[i]) == 0: buckets.pop(i) self.boundaries.pop(i + 1) num_samples_per_bucket = [] for i in range(len(buckets)): len_bucket = len(buckets[i]) total_batch_size = self.num_replicas * self.batch_size num_samples_per_bucket.append(len_bucket + ((total_batch_size - (len_bucket % total_batch_size)) % total_batch_size)) return buckets, num_samples_per_bucket def __iter__(self): g = torch.Generator() g.manual_seed(self.epoch) indices, batches = [], [] if self.shuffle: for bucket in self.buckets: indices.append(torch.randperm(len(bucket), generator=g).tolist()) else: for bucket in self.buckets: indices.append(list(range(len(bucket)))) for i in range(len(self.buckets)): bucket = self.buckets[i] len_bucket = len(bucket) ids_bucket = indices[i] rem = self.num_samples_per_bucket[i] - len_bucket ids_bucket = (ids_bucket + ids_bucket * (rem // len_bucket) + ids_bucket[: (rem % len_bucket)])[self.rank :: self.num_replicas] for j in range(len(ids_bucket) // self.batch_size): batches.append([bucket[idx] for idx in ids_bucket[j * self.batch_size : (j + 1) * self.batch_size]]) if self.shuffle: batches = [batches[i] for i in torch.randperm(len(batches), generator=g).tolist()] self.batches = batches assert len(self.batches) * self.batch_size == self.num_samples return iter(self.batches) def _bisect(self, x, lo=0, hi=None): if hi is None: hi = len(self.boundaries) - 1 if hi > lo: mid = (hi + lo) // 2 if self.boundaries[mid] < x and x <= self.boundaries[mid + 1]: return mid elif x <= self.boundaries[mid]: return self._bisect(x, lo, mid) else: return self._bisect(x, mid + 1, hi) else: return -1 def __len__(self): return self.num_samples // self.batch_size