import os import sys import math import torch sys.path.append(os.getcwd()) from main.library.algorithm.modules import WaveNet from main.library.algorithm.commons import sequence_mask from main.library.algorithm.normalization import LayerNorm from main.library.algorithm.attentions import MultiHeadAttention, FFN class Encoder(torch.nn.Module): def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0.0, window_size=10, onnx=False, **kwargs): super().__init__() self.hidden_channels = hidden_channels self.filter_channels = filter_channels self.n_heads = n_heads self.n_layers = n_layers self.kernel_size = kernel_size self.p_dropout = p_dropout self.window_size = window_size self.drop = torch.nn.Dropout(p_dropout) self.attn_layers = torch.nn.ModuleList() self.norm_layers_1 = torch.nn.ModuleList() self.ffn_layers = torch.nn.ModuleList() self.norm_layers_2 = torch.nn.ModuleList() for _ in range(self.n_layers): self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, window_size=window_size, onnx=onnx)) self.norm_layers_1.append(LayerNorm(hidden_channels, onnx=onnx)) self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, onnx=onnx)) self.norm_layers_2.append(LayerNorm(hidden_channels, onnx=onnx)) def forward(self, x, x_mask): attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1) x = x * x_mask for i in range(self.n_layers): x = self.norm_layers_1[i](x + self.drop(self.attn_layers[i](x, x, attn_mask))) x = self.norm_layers_2[i](x + self.drop(self.ffn_layers[i](x, x_mask))) return x * x_mask class TextEncoder(torch.nn.Module): def __init__(self, out_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, embedding_dim, f0=True, energy=False, onnx=False): super(TextEncoder, self).__init__() self.out_channels = out_channels self.hidden_channels = hidden_channels self.filter_channels = filter_channels self.n_heads = n_heads self.n_layers = n_layers self.kernel_size = kernel_size self.p_dropout = float(p_dropout) self.lrelu = torch.nn.LeakyReLU(0.1, inplace=True) self.emb_phone = torch.nn.Linear(embedding_dim, hidden_channels) self.emb_pitch = torch.nn.Embedding(256, hidden_channels) if f0 else None self.emb_energy = torch.nn.Linear(1, hidden_channels) if energy else None self.encoder = Encoder(hidden_channels, filter_channels, n_heads, n_layers, kernel_size, float(p_dropout), onnx=onnx) self.proj = torch.nn.Conv1d(hidden_channels, out_channels * 2, 1) def forward(self, phone, pitch, lengths, energy): x = self.emb_phone(phone) if pitch is not None: x += self.emb_pitch(pitch) if energy is not None: x += self.emb_energy(energy.unsqueeze(-1)) x = torch.transpose(self.lrelu(x * math.sqrt(self.hidden_channels)), 1, -1) x_mask = torch.unsqueeze(sequence_mask(lengths, x.size(2)), 1).to(x.dtype) m, logs = torch.split((self.proj(self.encoder(x * x_mask, x_mask)) * x_mask), self.out_channels, dim=1) return m, logs, x_mask class PosteriorEncoder(torch.nn.Module): def __init__(self, in_channels, out_channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0): super(PosteriorEncoder, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.hidden_channels = hidden_channels self.kernel_size = kernel_size self.dilation_rate = dilation_rate self.n_layers = n_layers self.gin_channels = gin_channels self.pre = torch.nn.Conv1d(in_channels, hidden_channels, 1) self.enc = WaveNet(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels) self.proj = torch.nn.Conv1d(hidden_channels, out_channels * 2, 1) def forward(self, x, x_lengths, g = None): x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) m, logs = torch.split((self.proj(self.enc((self.pre(x) * x_mask), x_mask, g=g)) * x_mask), self.out_channels, dim=1) return ((m + torch.randn_like(m) * torch.exp(logs)) * x_mask), m, logs, x_mask def remove_weight_norm(self): self.enc.remove_weight_norm()