import math import torch import torch.nn.functional as F from torch import nn, einsum from functools import partial from einops import rearrange, repeat, pack, unpack def exists(val): return val is not None def default(value, d): return value if exists(value) else d def empty(tensor): return tensor.numel() == 0 def pad_to_multiple(tensor, multiple, dim=-1, value=0): seqlen = tensor.shape[dim] m = seqlen / multiple if m.is_integer(): return False, tensor return True, F.pad(tensor, (*((0,) * (-1 - dim) * 2), 0, (math.ceil(m) * multiple - seqlen)), value = value) def look_around(x, backward = 1, forward = 0, pad_value = -1, dim = 2): t = x.shape[1] dims = (len(x.shape) - dim) * (0, 0) padded_x = F.pad(x, (*dims, backward, forward), value = pad_value) return torch.cat([padded_x[:, ind:(ind + t), ...] for ind in range(forward + backward + 1)], dim = dim) def rotate_half(x): x1, x2 = rearrange(x, 'b ... (r d) -> b ... r d', r = 2).unbind(dim = -2) return torch.cat((-x2, x1), dim = -1) def apply_rotary_pos_emb(q, k, freqs, scale = 1): q_len = q.shape[-2] q_freqs = freqs[..., -q_len:, :] inv_scale = scale ** -1 if scale.ndim == 2: scale = scale[-q_len:, :] q = (q * q_freqs.cos() * scale) + (rotate_half(q) * q_freqs.sin() * scale) k = (k * freqs.cos() * inv_scale) + (rotate_half(k) * freqs.sin() * inv_scale) return q, k def orthogonal_matrix_chunk(cols, qr_uniform_q=False, device=None): unstructured_block = torch.randn((cols, cols), device=device) q, r = torch.linalg.qr(unstructured_block.cpu(), mode="reduced") q, r = map(lambda t: t.to(device), (q, r)) if qr_uniform_q: d = torch.diag(r, 0) q *= d.sign() return q.t() def gaussian_orthogonal_random_matrix(nb_rows, nb_columns, scaling=0, qr_uniform_q=False, device=None): nb_full_blocks = int(nb_rows / nb_columns) block_list = [] for _ in range(nb_full_blocks): block_list.append(orthogonal_matrix_chunk(nb_columns, qr_uniform_q=qr_uniform_q, device=device)) remaining_rows = nb_rows - nb_full_blocks * nb_columns if remaining_rows > 0: block_list.append(orthogonal_matrix_chunk(nb_columns, qr_uniform_q=qr_uniform_q, device=device)[:remaining_rows]) if scaling == 0: multiplier = torch.randn((nb_rows, nb_columns), device=device).norm(dim=1) elif scaling == 1: multiplier = math.sqrt((float(nb_columns))) * torch.ones((nb_rows,), device=device) else: raise ValueError(f"{scaling} != 0, 1") return torch.diag(multiplier) @ torch.cat(block_list) def linear_attention(q, k, v): return einsum("...ed,...nd->...ne", k, q) if v is None else einsum("...de,...nd,...n->...ne", einsum("...nd,...ne->...de", k, v), q, 1.0 / (einsum("...nd,...d->...n", q, k.sum(dim=-2).type_as(q)) + 1e-8)) def softmax_kernel(data, *, projection_matrix, is_query, normalize_data=True, eps=1e-4, device=None): b, h, *_ = data.shape data_normalizer = (data.shape[-1] ** -0.25) if normalize_data else 1.0 ratio = projection_matrix.shape[0] ** -0.5 data_dash = torch.einsum("...id,...jd->...ij", (data_normalizer * data), repeat(projection_matrix, "j d -> b h j d", b=b, h=h).type_as(data)) diag_data = ((torch.sum(data**2, dim=-1) / 2.0) * (data_normalizer**2)).unsqueeze(dim=-1) return (ratio * (torch.exp(data_dash - diag_data - torch.max(data_dash, dim=-1, keepdim=True).values) + eps) if is_query else ratio * (torch.exp(data_dash - diag_data + eps))).type_as(data) class SinusoidalEmbeddings(nn.Module): def __init__(self, dim, scale_base = None, use_xpos = False, theta = 10000): super().__init__() inv_freq = 1. / (theta ** (torch.arange(0, dim, 2).float() / dim)) self.register_buffer('inv_freq', inv_freq) self.use_xpos = use_xpos self.scale_base = scale_base assert not (use_xpos and not exists(scale_base)) scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim) self.register_buffer('scale', scale, persistent = False) def forward(self, x): seq_len, device = x.shape[-2], x.device t = torch.arange(seq_len, device = x.device).type_as(self.inv_freq) freqs = torch.einsum('i , j -> i j', t, self.inv_freq) freqs = torch.cat((freqs, freqs), dim = -1) if not self.use_xpos: return freqs, torch.ones(1, device = device) power = (t - (seq_len // 2)) / self.scale_base scale = self.scale ** rearrange(power, 'n -> n 1') return freqs, torch.cat((scale, scale), dim = -1) class LocalAttention(nn.Module): def __init__(self, window_size, causal = False, look_backward = 1, look_forward = None, dropout = 0., shared_qk = False, rel_pos_emb_config = None, dim = None, autopad = False, exact_windowsize = False, scale = None, use_rotary_pos_emb = True, use_xpos = False, xpos_scale_base = None): super().__init__() look_forward = default(look_forward, 0 if causal else 1) assert not (causal and look_forward > 0) self.scale = scale self.window_size = window_size self.autopad = autopad self.exact_windowsize = exact_windowsize self.causal = causal self.look_backward = look_backward self.look_forward = look_forward self.dropout = nn.Dropout(dropout) self.shared_qk = shared_qk self.rel_pos = None self.use_xpos = use_xpos if use_rotary_pos_emb and (exists(rel_pos_emb_config) or exists(dim)): if exists(rel_pos_emb_config): dim = rel_pos_emb_config[0] self.rel_pos = SinusoidalEmbeddings(dim, use_xpos = use_xpos, scale_base = default(xpos_scale_base, window_size // 2)) def forward(self, q, k, v, mask = None, input_mask = None, attn_bias = None, window_size = None): mask = default(mask, input_mask) assert not (exists(window_size) and not self.use_xpos) _, autopad, pad_value, window_size, causal, look_backward, look_forward, shared_qk = q.shape, self.autopad, -1, default(window_size, self.window_size), self.causal, self.look_backward, self.look_forward, self.shared_qk (q, packed_shape), (k, _), (v, _) = map(lambda t: pack([t], '* n d'), (q, k, v)) if autopad: orig_seq_len = q.shape[1] (_, q), (_, k), (_, v) = map(lambda t: pad_to_multiple(t, self.window_size, dim = -2), (q, k, v)) b, n, dim_head, device, dtype = *q.shape, q.device, q.dtype scale = default(self.scale, dim_head ** -0.5) assert (n % window_size) == 0 windows = n // window_size if shared_qk: k = F.normalize(k, dim = -1).type(k.dtype) seq = torch.arange(n, device = device) b_t = rearrange(seq, '(w n) -> 1 w n', w = windows, n = window_size) bq, bk, bv = map(lambda t: rearrange(t, 'b (w n) d -> b w n d', w = windows), (q, k, v)) bq = bq * scale look_around_kwargs = dict(backward = look_backward, forward = look_forward, pad_value = pad_value) bk = look_around(bk, **look_around_kwargs) bv = look_around(bv, **look_around_kwargs) if exists(self.rel_pos): pos_emb, xpos_scale = self.rel_pos(bk) bq, bk = apply_rotary_pos_emb(bq, bk, pos_emb, scale = xpos_scale) bq_t = b_t bq_k = look_around(b_t, **look_around_kwargs) bq_t = rearrange(bq_t, '... i -> ... i 1') bq_k = rearrange(bq_k, '... j -> ... 1 j') pad_mask = bq_k == pad_value sim = einsum('b h i e, b h j e -> b h i j', bq, bk) if exists(attn_bias): heads = attn_bias.shape[0] assert (b % heads) == 0 attn_bias = repeat(attn_bias, 'h i j -> (b h) 1 i j', b = b // heads) sim = sim + attn_bias mask_value = -torch.finfo(sim.dtype).max if shared_qk: self_mask = bq_t == bq_k sim = sim.masked_fill(self_mask, -5e4) del self_mask if causal: causal_mask = bq_t < bq_k if self.exact_windowsize: causal_mask = causal_mask | (bq_t > (bq_k + (self.window_size * self.look_backward))) sim = sim.masked_fill(causal_mask, mask_value) del causal_mask sim = sim.masked_fill(((bq_k - (self.window_size * self.look_forward)) > bq_t) | (bq_t > (bq_k + (self.window_size * self.look_backward))) | pad_mask, mask_value) if not causal and self.exact_windowsize else sim.masked_fill(pad_mask, mask_value) if exists(mask): batch = mask.shape[0] assert (b % batch) == 0 h = b // mask.shape[0] if autopad: _, mask = pad_to_multiple(mask, window_size, dim = -1, value = False) mask = repeat(rearrange(look_around(rearrange(mask, '... (w n) -> (...) w n', w = windows, n = window_size), **{**look_around_kwargs, 'pad_value': False}), '... j -> ... 1 j'), 'b ... -> (b h) ...', h = h) sim = sim.masked_fill(~mask, mask_value) del mask out = rearrange(einsum('b h i j, b h j e -> b h i e', self.dropout(sim.softmax(dim = -1)), bv), 'b w n d -> b (w n) d') if autopad: out = out[:, :orig_seq_len, :] out, *_ = unpack(out, packed_shape, '* n d') return out class FastAttention(nn.Module): def __init__(self, dim_heads, nb_features=None, ortho_scaling=0, causal=False, generalized_attention=False, kernel_fn=nn.ReLU(), qr_uniform_q=False, no_projection=False): super().__init__() nb_features = default(nb_features, int(dim_heads * math.log(dim_heads))) self.dim_heads = dim_heads self.nb_features = nb_features self.ortho_scaling = ortho_scaling self.create_projection = partial(gaussian_orthogonal_random_matrix, nb_rows=self.nb_features, nb_columns=dim_heads, scaling=ortho_scaling, qr_uniform_q=qr_uniform_q) projection_matrix = self.create_projection() self.register_buffer("projection_matrix", projection_matrix) self.generalized_attention = generalized_attention self.kernel_fn = kernel_fn self.no_projection = no_projection self.causal = causal @torch.no_grad() def redraw_projection_matrix(self): projections = self.create_projection() self.projection_matrix.copy_(projections) del projections def forward(self, q, k, v): if self.no_projection: q, k = q.softmax(dim=-1), (torch.exp(k) if self.causal else k.softmax(dim=-2)) else: create_kernel = partial(softmax_kernel, projection_matrix=self.projection_matrix, device=q.device) q, k = create_kernel(q, is_query=True), create_kernel(k, is_query=False) attn_fn = linear_attention if not self.causal else self.causal_linear_fn return attn_fn(q, k, None) if v is None else attn_fn(q, k, v) class SelfAttention(nn.Module): def __init__(self, dim, causal=False, heads=8, dim_head=64, local_heads=0, local_window_size=256, nb_features=None, feature_redraw_interval=1000, generalized_attention=False, kernel_fn=nn.ReLU(), qr_uniform_q=False, dropout=0.0, no_projection=False): super().__init__() assert dim % heads == 0 dim_head = default(dim_head, dim // heads) inner_dim = dim_head * heads self.fast_attention = FastAttention(dim_head, nb_features, causal=causal, generalized_attention=generalized_attention, kernel_fn=kernel_fn, qr_uniform_q=qr_uniform_q, no_projection=no_projection) self.heads = heads self.global_heads = heads - local_heads self.local_attn = (LocalAttention(window_size=local_window_size, causal=causal, autopad=True, dropout=dropout, look_forward=int(not causal), rel_pos_emb_config=(dim_head, local_heads)) if local_heads > 0 else None) self.to_q = nn.Linear(dim, inner_dim) self.to_k = nn.Linear(dim, inner_dim) self.to_v = nn.Linear(dim, inner_dim) self.to_out = nn.Linear(inner_dim, dim) self.dropout = nn.Dropout(dropout) @torch.no_grad() def redraw_projection_matrix(self): self.fast_attention.redraw_projection_matrix() def forward(self, x, context=None, mask=None, context_mask=None, name=None, inference=False, **kwargs): _, _, _, h, gh = *x.shape, self.heads, self.global_heads cross_attend = exists(context) context = default(context, x) context_mask = default(context_mask, mask) if not cross_attend else context_mask q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), (self.to_q(x), self.to_k(context), self.to_v(context))) (q, lq), (k, lk), (v, lv) = map(lambda t: (t[:, :gh], t[:, gh:]), (q, k, v)) attn_outs = [] if not empty(q): if exists(context_mask): v.masked_fill_(~context_mask[:, None, :, None], 0.0) if cross_attend: pass else: out = self.fast_attention(q, k, v) attn_outs.append(out) if not empty(lq): assert (not cross_attend), "not cross_attend" out = self.local_attn(lq, lk, lv, input_mask=mask) attn_outs.append(out) return self.dropout(self.to_out(rearrange(torch.cat(attn_outs, dim=1), "b h n d -> b n (h d)")))