import math import torch from torch import nn from copy import deepcopy from torch.nn import functional as F from .states import capture_init from .demucs import DConv, rescale_module def spectro(x, n_fft=512, hop_length=None, pad=0): *other, length = x.shape x = x.reshape(-1, length) device_type = x.device.type is_other_gpu = not device_type in ["cuda", "cpu"] if is_other_gpu: x = x.cpu() z = torch.stft(x, n_fft * (1 + pad), hop_length or n_fft // 4, window=torch.hann_window(n_fft).to(x), win_length=n_fft, normalized=True, center=True, return_complex=True, pad_mode="reflect") _, freqs, frame = z.shape return z.view(*other, freqs, frame) def ispectro(z, hop_length=None, length=None, pad=0): *other, freqs, frames = z.shape n_fft = 2 * freqs - 2 z = z.view(-1, freqs, frames) win_length = n_fft // (1 + pad) device_type = z.device.type is_other_gpu = not device_type in ["cuda", "cpu"] if is_other_gpu: z = z.cpu() x = torch.istft(z, n_fft, hop_length, window=torch.hann_window(win_length).to(z.real), win_length=win_length, normalized=True, length=length, center=True) _, length = x.shape return x.view(*other, length) def atan2(y, x): pi = 2 * torch.asin(torch.tensor(1.0)) x += ((x == 0) & (y == 0)) * 1.0 out = torch.atan(y / x) out += ((y >= 0) & (x < 0)) * pi out -= ((y < 0) & (x < 0)) * pi out *= 1 - ((y > 0) & (x == 0)) * 1.0 out += ((y > 0) & (x == 0)) * (pi / 2) out *= 1 - ((y < 0) & (x == 0)) * 1.0 out += ((y < 0) & (x == 0)) * (-pi / 2) return out def _norm(x): return torch.abs(x[..., 0]) ** 2 + torch.abs(x[..., 1]) ** 2 def _mul_add(a, b, out = None): target_shape = torch.Size([max(sa, sb) for (sa, sb) in zip(a.shape, b.shape)]) if out is None or out.shape != target_shape: out = torch.zeros(target_shape, dtype=a.dtype, device=a.device) if out is a: real_a = a[..., 0] out[..., 0] = out[..., 0] + (real_a * b[..., 0] - a[..., 1] * b[..., 1]) out[..., 1] = out[..., 1] + (real_a * b[..., 1] + a[..., 1] * b[..., 0]) else: out[..., 0] = out[..., 0] + (a[..., 0] * b[..., 0] - a[..., 1] * b[..., 1]) out[..., 1] = out[..., 1] + (a[..., 0] * b[..., 1] + a[..., 1] * b[..., 0]) return out def _mul(a, b, out = None): target_shape = torch.Size([max(sa, sb) for (sa, sb) in zip(a.shape, b.shape)]) if out is None or out.shape != target_shape: out = torch.zeros(target_shape, dtype=a.dtype, device=a.device) if out is a: real_a = a[..., 0] out[..., 0] = real_a * b[..., 0] - a[..., 1] * b[..., 1] out[..., 1] = real_a * b[..., 1] + a[..., 1] * b[..., 0] else: out[..., 0] = a[..., 0] * b[..., 0] - a[..., 1] * b[..., 1] out[..., 1] = a[..., 0] * b[..., 1] + a[..., 1] * b[..., 0] return out def _inv(z, out = None): ez = _norm(z) if out is None or out.shape != z.shape: out = torch.zeros_like(z) out[..., 0] = z[..., 0] / ez out[..., 1] = -z[..., 1] / ez return out def _conj(z, out = None): if out is None or out.shape != z.shape: out = torch.zeros_like(z) out[..., 0] = z[..., 0] out[..., 1] = -z[..., 1] return out def _invert(M, out = None): nb_channels = M.shape[-2] if out is None or out.shape != M.shape: out = torch.empty_like(M) if nb_channels == 1: out = _inv(M, out) elif nb_channels == 2: det = _mul(M[..., 0, 0, :], M[..., 1, 1, :]) det = det - _mul(M[..., 0, 1, :], M[..., 1, 0, :]) invDet = _inv(det) out[..., 0, 0, :] = _mul(invDet, M[..., 1, 1, :], out[..., 0, 0, :]) out[..., 1, 0, :] = _mul(-invDet, M[..., 1, 0, :], out[..., 1, 0, :]) out[..., 0, 1, :] = _mul(-invDet, M[..., 0, 1, :], out[..., 0, 1, :]) out[..., 1, 1, :] = _mul(invDet, M[..., 0, 0, :], out[..., 1, 1, :]) else: raise Exception("Torch == 2 Channels") return out def expectation_maximization(y, x, iterations = 2, eps = 1e-10, batch_size = 200): (nb_frames, nb_bins, nb_channels) = x.shape[:-1] nb_sources = y.shape[-1] regularization = torch.cat((torch.eye(nb_channels, dtype=x.dtype, device=x.device)[..., None], torch.zeros((nb_channels, nb_channels, 1), dtype=x.dtype, device=x.device)), dim=2) regularization = torch.sqrt(torch.as_tensor(eps)) * (regularization[None, None, ...].expand((-1, nb_bins, -1, -1, -1))) R = [torch.zeros((nb_bins, nb_channels, nb_channels, 2), dtype=x.dtype, device=x.device) for j in range(nb_sources)] weight = torch.zeros((nb_bins,), dtype=x.dtype, device=x.device) v = torch.zeros((nb_frames, nb_bins, nb_sources), dtype=x.dtype, device=x.device) for _ in range(iterations): v = torch.mean(torch.abs(y[..., 0, :]) ** 2 + torch.abs(y[..., 1, :]) ** 2, dim=-2) for j in range(nb_sources): R[j] = torch.tensor(0.0, device=x.device) weight = torch.tensor(eps, device=x.device) pos = 0 batch_size = batch_size if batch_size else nb_frames while pos < nb_frames: t = torch.arange(pos, min(nb_frames, pos + batch_size)) pos = int(t[-1]) + 1 R[j] = R[j] + torch.sum(_covariance(y[t, ..., j]), dim=0) weight = weight + torch.sum(v[t, ..., j], dim=0) R[j] = R[j] / weight[..., None, None, None] weight = torch.zeros_like(weight) if y.requires_grad: y = y.clone() pos = 0 while pos < nb_frames: t = torch.arange(pos, min(nb_frames, pos + batch_size)) pos = int(t[-1]) + 1 y[t, ...] = torch.tensor(0.0, device=x.device, dtype=x.dtype) Cxx = regularization for j in range(nb_sources): Cxx = Cxx + (v[t, ..., j, None, None, None] * R[j][None, ...].clone()) inv_Cxx = _invert(Cxx) for j in range(nb_sources): gain = torch.zeros_like(inv_Cxx) indices = torch.cartesian_prod(torch.arange(nb_channels), torch.arange(nb_channels), torch.arange(nb_channels)) for index in indices: gain[:, :, index[0], index[1], :] = _mul_add(R[j][None, :, index[0], index[2], :].clone(), inv_Cxx[:, :, index[2], index[1], :], gain[:, :, index[0], index[1], :]) gain = gain * v[t, ..., None, None, None, j] for i in range(nb_channels): y[t, ..., j] = _mul_add(gain[..., i, :], x[t, ..., i, None, :], y[t, ..., j]) return y, v, R def wiener(targets_spectrograms, mix_stft, iterations = 1, softmask = False, residual = False, scale_factor = 10.0, eps = 1e-10): if softmask: y = mix_stft[..., None] * (targets_spectrograms / (eps + torch.sum(targets_spectrograms, dim=-1, keepdim=True).to(mix_stft.dtype)))[..., None, :] else: angle = atan2(mix_stft[..., 1], mix_stft[..., 0])[..., None] nb_sources = targets_spectrograms.shape[-1] y = torch.zeros(mix_stft.shape + (nb_sources,), dtype=mix_stft.dtype, device=mix_stft.device) y[..., 0, :] = targets_spectrograms * torch.cos(angle) y[..., 1, :] = targets_spectrograms * torch.sin(angle) if residual: y = torch.cat([y, mix_stft[..., None] - y.sum(dim=-1, keepdim=True)], dim=-1) if iterations == 0: return y max_abs = torch.max(torch.as_tensor(1.0, dtype=mix_stft.dtype, device=mix_stft.device), torch.sqrt(_norm(mix_stft)).max() / scale_factor) mix_stft = mix_stft / max_abs y = y / max_abs y = expectation_maximization(y, mix_stft, iterations, eps=eps)[0] y = y * max_abs return y def _covariance(y_j): (nb_frames, nb_bins, nb_channels) = y_j.shape[:-1] Cj = torch.zeros((nb_frames, nb_bins, nb_channels, nb_channels, 2), dtype=y_j.dtype, device=y_j.device) indices = torch.cartesian_prod(torch.arange(nb_channels), torch.arange(nb_channels)) for index in indices: Cj[:, :, index[0], index[1], :] = _mul_add(y_j[:, :, index[0], :], _conj(y_j[:, :, index[1], :]), Cj[:, :, index[0], index[1], :]) return Cj def pad1d(x, paddings, mode = "constant", value = 0.0): x0 = x length = x.shape[-1] padding_left, padding_right = paddings if mode == "reflect": max_pad = max(padding_left, padding_right) if length <= max_pad: extra_pad = max_pad - length + 1 extra_pad_right = min(padding_right, extra_pad) extra_pad_left = extra_pad - extra_pad_right paddings = (padding_left - extra_pad_left, padding_right - extra_pad_right) x = F.pad(x, (extra_pad_left, extra_pad_right)) out = F.pad(x, paddings, mode, value) assert out.shape[-1] == length + padding_left + padding_right assert (out[..., padding_left : padding_left + length] == x0).all() return out class ScaledEmbedding(nn.Module): def __init__(self, num_embeddings, embedding_dim, scale = 10.0, smooth=False): super().__init__() self.embedding = nn.Embedding(num_embeddings, embedding_dim) if smooth: weight = torch.cumsum(self.embedding.weight.data, dim=0) weight = weight / torch.arange(1, num_embeddings + 1).to(weight).sqrt()[:, None] self.embedding.weight.data[:] = weight self.embedding.weight.data /= scale self.scale = scale @property def weight(self): return self.embedding.weight * self.scale def forward(self, x): return self.embedding(x) * self.scale class HEncLayer(nn.Module): def __init__(self, chin, chout, kernel_size=8, stride=4, norm_groups=1, empty=False, freq=True, dconv=True, norm=True, context=0, dconv_kw={}, pad=True, rewrite=True): super().__init__() norm_fn = lambda d: nn.Identity() if norm: norm_fn = lambda d: nn.GroupNorm(norm_groups, d) pad = kernel_size // 4 if pad else 0 klass = nn.Conv1d self.freq = freq self.kernel_size = kernel_size self.stride = stride self.empty = empty self.norm = norm self.pad = pad if freq: kernel_size = [kernel_size, 1] stride = [stride, 1] pad = [pad, 0] klass = nn.Conv2d self.conv = klass(chin, chout, kernel_size, stride, pad) if self.empty: return self.norm1 = norm_fn(chout) self.rewrite = None if rewrite: self.rewrite = klass(chout, 2 * chout, 1 + 2 * context, 1, context) self.norm2 = norm_fn(2 * chout) self.dconv = None if dconv: self.dconv = DConv(chout, **dconv_kw) def forward(self, x, inject=None): if not self.freq and x.dim() == 4: B, C, Fr, T = x.shape x = x.view(B, -1, T) if not self.freq: le = x.shape[-1] if not le % self.stride == 0: x = F.pad(x, (0, self.stride - (le % self.stride))) y = self.conv(x) if self.empty: return y if inject is not None: assert inject.shape[-1] == y.shape[-1], (inject.shape, y.shape) if inject.dim() == 3 and y.dim() == 4: inject = inject[:, :, None] y = y + inject y = F.gelu(self.norm1(y)) if self.dconv: if self.freq: B, C, Fr, T = y.shape y = y.permute(0, 2, 1, 3).reshape(-1, C, T) y = self.dconv(y) if self.freq: y = y.view(B, Fr, C, T).permute(0, 2, 1, 3) if self.rewrite: z = self.norm2(self.rewrite(y)) z = F.glu(z, dim=1) else: z = y return z class MultiWrap(nn.Module): def __init__(self, layer, split_ratios): super().__init__() self.split_ratios = split_ratios self.layers = nn.ModuleList() self.conv = isinstance(layer, HEncLayer) assert not layer.norm assert layer.freq assert layer.pad if not self.conv: assert not layer.context_freq for _ in range(len(split_ratios) + 1): lay = deepcopy(layer) if self.conv: lay.conv.padding = (0, 0) else: lay.pad = False for m in lay.modules(): if hasattr(m, "reset_parameters"): m.reset_parameters() self.layers.append(lay) def forward(self, x, skip=None, length=None): B, C, Fr, T = x.shape ratios = list(self.split_ratios) + [1] start = 0 outs = [] for ratio, layer in zip(ratios, self.layers): if self.conv: pad = layer.kernel_size // 4 if ratio == 1: limit = Fr frames = -1 else: limit = int(round(Fr * ratio)) le = limit - start if start == 0: le += pad frames = round((le - layer.kernel_size) / layer.stride + 1) limit = start + (frames - 1) * layer.stride + layer.kernel_size if start == 0: limit -= pad assert limit - start > 0, (limit, start) assert limit <= Fr, (limit, Fr) y = x[:, :, start:limit, :] if start == 0: y = F.pad(y, (0, 0, pad, 0)) if ratio == 1: y = F.pad(y, (0, 0, 0, pad)) outs.append(layer(y)) start = limit - layer.kernel_size + layer.stride else: limit = Fr if ratio == 1 else int(round(Fr * ratio)) last = layer.last layer.last = True y = x[:, :, start:limit] s = skip[:, :, start:limit] out, _ = layer(y, s, None) if outs: outs[-1][:, :, -layer.stride :] += out[:, :, : layer.stride] - layer.conv_tr.bias.view(1, -1, 1, 1) out = out[:, :, layer.stride :] if ratio == 1: out = out[:, :, : -layer.stride // 2, :] if start == 0: out = out[:, :, layer.stride // 2 :, :] outs.append(out) layer.last = last start = limit out = torch.cat(outs, dim=2) if not self.conv and not last: out = F.gelu(out) if self.conv: return out else: return out, None class HDecLayer(nn.Module): def __init__(self, chin, chout, last=False, kernel_size=8, stride=4, norm_groups=1, empty=False, freq=True, dconv=True, norm=True, context=1, dconv_kw={}, pad=True, context_freq=True, rewrite=True): super().__init__() norm_fn = lambda d: nn.Identity() if norm: norm_fn = lambda d: nn.GroupNorm(norm_groups, d) pad = kernel_size // 4 if pad else 0 self.pad = pad self.last = last self.freq = freq self.chin = chin self.empty = empty self.stride = stride self.kernel_size = kernel_size self.norm = norm self.context_freq = context_freq klass = nn.Conv1d klass_tr = nn.ConvTranspose1d if freq: kernel_size = [kernel_size, 1] stride = [stride, 1] klass = nn.Conv2d klass_tr = nn.ConvTranspose2d self.conv_tr = klass_tr(chin, chout, kernel_size, stride) self.norm2 = norm_fn(chout) if self.empty: return self.rewrite = None if rewrite: if context_freq: self.rewrite = klass(chin, 2 * chin, 1 + 2 * context, 1, context) else: self.rewrite = klass(chin, 2 * chin, [1, 1 + 2 * context], 1, [0, context]) self.norm1 = norm_fn(2 * chin) self.dconv = None if dconv: self.dconv = DConv(chin, **dconv_kw) def forward(self, x, skip, length): if self.freq and x.dim() == 3: B, C, T = x.shape x = x.view(B, self.chin, -1, T) if not self.empty: x = x + skip y = F.glu(self.norm1(self.rewrite(x)), dim=1) if self.rewrite else x if self.dconv: if self.freq: B, C, Fr, T = y.shape y = y.permute(0, 2, 1, 3).reshape(-1, C, T) y = self.dconv(y) if self.freq: y = y.view(B, Fr, C, T).permute(0, 2, 1, 3) else: y = x assert skip is None z = self.norm2(self.conv_tr(y)) if self.freq: if self.pad: z = z[..., self.pad : -self.pad, :] else: z = z[..., self.pad : self.pad + length] assert z.shape[-1] == length, (z.shape[-1], length) if not self.last: z = F.gelu(z) return z, y class HDemucs(nn.Module): @capture_init def __init__(self, sources, audio_channels=2, channels=48, channels_time=None, growth=2, nfft=4096, wiener_iters=0, end_iters=0, wiener_residual=False, cac=True, depth=6, rewrite=True, hybrid=True, hybrid_old=False, multi_freqs=None, multi_freqs_depth=2, freq_emb=0.2, emb_scale=10, emb_smooth=True, kernel_size=8, time_stride=2, stride=4, context=1, context_enc=0, norm_starts=4, norm_groups=4, dconv_mode=1, dconv_depth=2, dconv_comp=4, dconv_attn=4, dconv_lstm=4, dconv_init=1e-4, rescale=0.1, samplerate=44100, segment=4 * 10): super().__init__() self.cac = cac self.wiener_residual = wiener_residual self.audio_channels = audio_channels self.sources = sources self.kernel_size = kernel_size self.context = context self.stride = stride self.depth = depth self.channels = channels self.samplerate = samplerate self.segment = segment self.nfft = nfft self.hop_length = nfft // 4 self.wiener_iters = wiener_iters self.end_iters = end_iters self.freq_emb = None self.hybrid = hybrid self.hybrid_old = hybrid_old if hybrid_old: assert hybrid if hybrid: assert wiener_iters == end_iters self.encoder = nn.ModuleList() self.decoder = nn.ModuleList() if hybrid: self.tencoder = nn.ModuleList() self.tdecoder = nn.ModuleList() chin = audio_channels chin_z = chin if self.cac: chin_z *= 2 chout = channels_time or channels chout_z = channels freqs = nfft // 2 for index in range(depth): lstm = index >= dconv_lstm attn = index >= dconv_attn norm = index >= norm_starts freq = freqs > 1 stri = stride ker = kernel_size if not freq: assert freqs == 1 ker = time_stride * 2 stri = time_stride pad = True last_freq = False if freq and freqs <= kernel_size: ker = freqs pad = False last_freq = True kw = { "kernel_size": ker, "stride": stri, "freq": freq, "pad": pad, "norm": norm, "rewrite": rewrite, "norm_groups": norm_groups, "dconv_kw": {"lstm": lstm, "attn": attn, "depth": dconv_depth, "compress": dconv_comp, "init": dconv_init, "gelu": True}, } kwt = dict(kw) kwt["freq"] = 0 kwt["kernel_size"] = kernel_size kwt["stride"] = stride kwt["pad"] = True kw_dec = dict(kw) multi = False if multi_freqs and index < multi_freqs_depth: multi = True kw_dec["context_freq"] = False if last_freq: chout_z = max(chout, chout_z) chout = chout_z enc = HEncLayer(chin_z, chout_z, dconv=dconv_mode & 1, context=context_enc, **kw) if hybrid and freq: tenc = HEncLayer(chin, chout, dconv=dconv_mode & 1, context=context_enc, empty=last_freq, **kwt) self.tencoder.append(tenc) if multi: enc = MultiWrap(enc, multi_freqs) self.encoder.append(enc) if index == 0: chin = self.audio_channels * len(self.sources) chin_z = chin if self.cac: chin_z *= 2 dec = HDecLayer(chout_z, chin_z, dconv=dconv_mode & 2, last=index == 0, context=context, **kw_dec) if multi: dec = MultiWrap(dec, multi_freqs) if hybrid and freq: tdec = HDecLayer(chout, chin, dconv=dconv_mode & 2, empty=last_freq, last=index == 0, context=context, **kwt) self.tdecoder.insert(0, tdec) self.decoder.insert(0, dec) chin = chout chin_z = chout_z chout = int(growth * chout) chout_z = int(growth * chout_z) if freq: if freqs <= kernel_size: freqs = 1 else: freqs //= stride if index == 0 and freq_emb: self.freq_emb = ScaledEmbedding(freqs, chin_z, smooth=emb_smooth, scale=emb_scale) self.freq_emb_scale = freq_emb if rescale: rescale_module(self, reference=rescale) def _spec(self, x): hl = self.hop_length nfft = self.nfft if self.hybrid: assert hl == nfft // 4 le = int(math.ceil(x.shape[-1] / hl)) pad = hl // 2 * 3 x = pad1d(x, (pad, pad + le * hl - x.shape[-1]), mode="reflect") if not self.hybrid_old else pad1d(x, (pad, pad + le * hl - x.shape[-1])) z = spectro(x, nfft, hl)[..., :-1, :] if self.hybrid: assert z.shape[-1] == le + 4, (z.shape, x.shape, le) z = z[..., 2 : 2 + le] return z def _ispec(self, z, length=None, scale=0): hl = self.hop_length // (4**scale) z = F.pad(z, (0, 0, 0, 1)) if self.hybrid: z = F.pad(z, (2, 2)) pad = hl // 2 * 3 le = hl * int(math.ceil(length / hl)) + 2 * pad if not self.hybrid_old else hl * int(math.ceil(length / hl)) x = ispectro(z, hl, length=le) x = x[..., pad : pad + length] if not self.hybrid_old else x[..., :length] else: x = ispectro(z, hl, length) return x def _magnitude(self, z): if self.cac: B, C, Fr, T = z.shape m = torch.view_as_real(z).permute(0, 1, 4, 2, 3) m = m.reshape(B, C * 2, Fr, T) else: m = z.abs() return m def _mask(self, z, m): niters = self.wiener_iters if self.cac: B, S, C, Fr, T = m.shape out = m.view(B, S, -1, 2, Fr, T).permute(0, 1, 2, 4, 5, 3) out = torch.view_as_complex(out.contiguous()) return out if self.training: niters = self.end_iters if niters < 0: z = z[:, None] return z / (1e-8 + z.abs()) * m else: return self._wiener(m, z, niters) def _wiener(self, mag_out, mix_stft, niters): init = mix_stft.dtype wiener_win_len = 300 residual = self.wiener_residual B, S, C, Fq, T = mag_out.shape mag_out = mag_out.permute(0, 4, 3, 2, 1) mix_stft = torch.view_as_real(mix_stft.permute(0, 3, 2, 1)) outs = [] for sample in range(B): pos = 0 out = [] for pos in range(0, T, wiener_win_len): frame = slice(pos, pos + wiener_win_len) z_out = wiener(mag_out[sample, frame], mix_stft[sample, frame], niters, residual=residual) out.append(z_out.transpose(-1, -2)) outs.append(torch.cat(out, dim=0)) out = torch.view_as_complex(torch.stack(outs, 0)) out = out.permute(0, 4, 3, 2, 1).contiguous() if residual: out = out[:, :-1] assert list(out.shape) == [B, S, C, Fq, T] return out.to(init) def forward(self, mix): x = mix length = x.shape[-1] z = self._spec(mix) mag = self._magnitude(z).to(mix.device) x = mag B, C, Fq, T = x.shape mean = x.mean(dim=(1, 2, 3), keepdim=True) std = x.std(dim=(1, 2, 3), keepdim=True) x = (x - mean) / (1e-5 + std) if self.hybrid: xt = mix meant = xt.mean(dim=(1, 2), keepdim=True) stdt = xt.std(dim=(1, 2), keepdim=True) xt = (xt - meant) / (1e-5 + stdt) saved, saved_t, lengths, lengths_t = [], [], [], [] for idx, encode in enumerate(self.encoder): lengths.append(x.shape[-1]) inject = None if self.hybrid and idx < len(self.tencoder): lengths_t.append(xt.shape[-1]) tenc = self.tencoder[idx] xt = tenc(xt) if not tenc.empty: saved_t.append(xt) else: inject = xt x = encode(x, inject) if idx == 0 and self.freq_emb is not None: frs = torch.arange(x.shape[-2], device=x.device) emb = self.freq_emb(frs).t()[None, :, :, None].expand_as(x) x = x + self.freq_emb_scale * emb saved.append(x) x = torch.zeros_like(x) if self.hybrid: xt = torch.zeros_like(x) for idx, decode in enumerate(self.decoder): skip = saved.pop(-1) x, pre = decode(x, skip, lengths.pop(-1)) if self.hybrid: offset = self.depth - len(self.tdecoder) if self.hybrid and idx >= offset: tdec = self.tdecoder[idx - offset] length_t = lengths_t.pop(-1) if tdec.empty: assert pre.shape[2] == 1, pre.shape pre = pre[:, :, 0] xt, _ = tdec(pre, None, length_t) else: skip = saved_t.pop(-1) xt, _ = tdec(xt, skip, length_t) assert len(saved) == 0 assert len(lengths_t) == 0 assert len(saved_t) == 0 S = len(self.sources) x = x.view(B, S, -1, Fq, T) x = x * std[:, None] + mean[:, None] device_type = x.device.type device_load = f"{device_type}:{x.device.index}" if not device_type == "mps" else device_type x_is_other_gpu = not device_type in ["cuda", "cpu"] if x_is_other_gpu: x = x.cpu() zout = self._mask(z, x) x = self._ispec(zout, length) if x_is_other_gpu: x = x.to(device_load) if self.hybrid: xt = xt.view(B, S, -1, length) xt = xt * stdt[:, None] + meant[:, None] x = xt + x return x