|
import tqdm
|
|
import torch
|
|
import random
|
|
|
|
from torch import nn
|
|
from torch.nn import functional as F
|
|
from concurrent.futures import ThreadPoolExecutor
|
|
|
|
from .utils import center_trim
|
|
|
|
class DummyPoolExecutor:
|
|
class DummyResult:
|
|
def __init__(self, func, *args, **kwargs):
|
|
self.func = func
|
|
self.args = args
|
|
self.kwargs = kwargs
|
|
|
|
def result(self):
|
|
return self.func(*self.args, **self.kwargs)
|
|
|
|
def __init__(self, workers=0):
|
|
pass
|
|
|
|
def submit(self, func, *args, **kwargs):
|
|
return DummyPoolExecutor.DummyResult(func, *args, **kwargs)
|
|
|
|
def __enter__(self):
|
|
return self
|
|
|
|
def __exit__(self, exc_type, exc_value, exc_tb):
|
|
return
|
|
|
|
class BagOfModels(nn.Module):
|
|
def __init__(self, models, weights = None, segment = None):
|
|
super().__init__()
|
|
assert len(models) > 0
|
|
first = models[0]
|
|
|
|
for other in models:
|
|
assert other.sources == first.sources
|
|
assert other.samplerate == first.samplerate
|
|
assert other.audio_channels == first.audio_channels
|
|
|
|
if segment is not None: other.segment = segment
|
|
|
|
self.audio_channels = first.audio_channels
|
|
self.samplerate = first.samplerate
|
|
self.sources = first.sources
|
|
self.models = nn.ModuleList(models)
|
|
|
|
if weights is None: weights = [[1.0 for _ in first.sources] for _ in models]
|
|
else:
|
|
assert len(weights) == len(models)
|
|
|
|
for weight in weights:
|
|
assert len(weight) == len(first.sources)
|
|
|
|
self.weights = weights
|
|
|
|
def forward(self, x):
|
|
pass
|
|
|
|
class TensorChunk:
|
|
def __init__(self, tensor, offset=0, length=None):
|
|
total_length = tensor.shape[-1]
|
|
assert offset >= 0
|
|
assert offset < total_length
|
|
|
|
length = total_length - offset if length is None else min(total_length - offset, length)
|
|
|
|
if isinstance(tensor, TensorChunk):
|
|
self.tensor = tensor.tensor
|
|
self.offset = offset + tensor.offset
|
|
else:
|
|
self.tensor = tensor
|
|
self.offset = offset
|
|
|
|
self.length = length
|
|
self.device = tensor.device
|
|
|
|
@property
|
|
def shape(self):
|
|
shape = list(self.tensor.shape)
|
|
shape[-1] = self.length
|
|
return shape
|
|
|
|
def padded(self, target_length):
|
|
delta = target_length - self.length
|
|
total_length = self.tensor.shape[-1]
|
|
assert delta >= 0
|
|
|
|
start = self.offset - delta // 2
|
|
end = start + target_length
|
|
|
|
correct_start = max(0, start)
|
|
correct_end = min(total_length, end)
|
|
|
|
pad_left = correct_start - start
|
|
pad_right = end - correct_end
|
|
|
|
out = F.pad(self.tensor[..., correct_start:correct_end], (pad_left, pad_right))
|
|
|
|
assert out.shape[-1] == target_length
|
|
return out
|
|
|
|
def tensor_chunk(tensor_or_chunk):
|
|
if isinstance(tensor_or_chunk, TensorChunk): return tensor_or_chunk
|
|
else:
|
|
assert isinstance(tensor_or_chunk, torch.Tensor)
|
|
return TensorChunk(tensor_or_chunk)
|
|
|
|
def apply_model(model, mix, shifts=1, split=True, overlap=0.25, transition_power=1.0, static_shifts=1, set_progress_bar=None, device=None, progress=False, num_workers=0, pool=None):
|
|
global fut_length, bag_num, prog_bar
|
|
|
|
device = mix.device if device is None else torch.device(device)
|
|
if pool is None: pool = ThreadPoolExecutor(num_workers) if num_workers > 0 and device.type == "cpu" else DummyPoolExecutor()
|
|
|
|
kwargs = {
|
|
"shifts": shifts,
|
|
"split": split,
|
|
"overlap": overlap,
|
|
"transition_power": transition_power,
|
|
"progress": progress,
|
|
"device": device,
|
|
"pool": pool,
|
|
"set_progress_bar": set_progress_bar,
|
|
"static_shifts": static_shifts,
|
|
}
|
|
|
|
if isinstance(model, BagOfModels):
|
|
estimates, fut_length, prog_bar, current_model = 0, 0, 0, 0
|
|
totals = [0] * len(model.sources)
|
|
bag_num = len(model.models)
|
|
|
|
for sub_model, weight in zip(model.models, model.weights):
|
|
original_model_device = next(iter(sub_model.parameters())).device
|
|
sub_model.to(device)
|
|
fut_length += fut_length
|
|
current_model += 1
|
|
out = apply_model(sub_model, mix, **kwargs)
|
|
sub_model.to(original_model_device)
|
|
|
|
for k, inst_weight in enumerate(weight):
|
|
out[:, k, :, :] *= inst_weight
|
|
totals[k] += inst_weight
|
|
|
|
estimates += out
|
|
del out
|
|
|
|
for k in range(estimates.shape[1]):
|
|
estimates[:, k, :, :] /= totals[k]
|
|
|
|
return estimates
|
|
|
|
model.to(device)
|
|
model.eval()
|
|
assert transition_power >= 1
|
|
batch, channels, length = mix.shape
|
|
|
|
if shifts:
|
|
kwargs["shifts"] = 0
|
|
max_shift = int(0.5 * model.samplerate)
|
|
mix = tensor_chunk(mix)
|
|
padded_mix = mix.padded(length + 2 * max_shift)
|
|
out = 0
|
|
|
|
for _ in range(shifts):
|
|
offset = random.randint(0, max_shift)
|
|
shifted = TensorChunk(padded_mix, offset, length + max_shift - offset)
|
|
shifted_out = apply_model(model, shifted, **kwargs)
|
|
out += shifted_out[..., max_shift - offset :]
|
|
|
|
out /= shifts
|
|
return out
|
|
elif split:
|
|
kwargs["split"] = False
|
|
out = torch.zeros(batch, len(model.sources), channels, length, device=mix.device)
|
|
sum_weight = torch.zeros(length, device=mix.device)
|
|
segment = int(model.samplerate * model.segment)
|
|
stride = int((1 - overlap) * segment)
|
|
offsets = range(0, length, stride)
|
|
weight = torch.cat([torch.arange(1, segment // 2 + 1, device=device), torch.arange(segment - segment // 2, 0, -1, device=device)])
|
|
assert len(weight) == segment
|
|
weight = (weight / weight.max()) ** transition_power
|
|
futures = []
|
|
|
|
for offset in offsets:
|
|
chunk = TensorChunk(mix, offset, segment)
|
|
future = pool.submit(apply_model, model, chunk, **kwargs)
|
|
futures.append((future, offset))
|
|
offset += segment
|
|
|
|
if progress: futures = tqdm.tqdm(futures)
|
|
|
|
for future, offset in futures:
|
|
if set_progress_bar:
|
|
fut_length = len(futures) * bag_num * static_shifts
|
|
prog_bar += 1
|
|
set_progress_bar(0.1, (0.8 / fut_length * prog_bar))
|
|
|
|
chunk_out = future.result()
|
|
chunk_length = chunk_out.shape[-1]
|
|
|
|
out[..., offset : offset + segment] += (weight[:chunk_length] * chunk_out).to(mix.device)
|
|
sum_weight[offset : offset + segment] += weight[:chunk_length].to(mix.device)
|
|
|
|
assert sum_weight.min() > 0
|
|
|
|
out /= sum_weight
|
|
return out
|
|
else:
|
|
valid_length = model.valid_length(length) if hasattr(model, "valid_length") else length
|
|
mix = tensor_chunk(mix)
|
|
padded_mix = mix.padded(valid_length).to(device)
|
|
|
|
with torch.no_grad():
|
|
out = model(padded_mix)
|
|
|
|
return center_trim(out, length)
|
|
|
|
def demucs_segments(demucs_segment, demucs_model):
|
|
if demucs_segment == "Default":
|
|
segment = None
|
|
|
|
if isinstance(demucs_model, BagOfModels):
|
|
if segment is not None:
|
|
for sub in demucs_model.models:
|
|
sub.segment = segment
|
|
else:
|
|
if segment is not None: sub.segment = segment
|
|
else:
|
|
try:
|
|
segment = int(demucs_segment)
|
|
if isinstance(demucs_model, BagOfModels):
|
|
if segment is not None:
|
|
for sub in demucs_model.models:
|
|
sub.segment = segment
|
|
else:
|
|
if segment is not None: sub.segment = segment
|
|
except:
|
|
segment = None
|
|
|
|
if isinstance(demucs_model, BagOfModels):
|
|
if segment is not None:
|
|
for sub in demucs_model.models:
|
|
sub.segment = segment
|
|
else:
|
|
if segment is not None: sub.segment = segment
|
|
|
|
return demucs_model |