RVC-GUI / main /inference /convert.py
AnhP's picture
Upload 76 files
e0202f8 verified
raw
history blame
42.1 kB
import re
import os
import sys
import time
import faiss
import torch
import shutil
import librosa
import logging
import argparse
import warnings
import parselmouth
import onnxruntime
import logging.handlers
import numpy as np
import soundfile as sf
import torch.nn.functional as F
from tqdm import tqdm
from scipy import signal
from distutils.util import strtobool
from fairseq import checkpoint_utils
warnings.filterwarnings("ignore")
sys.path.append(os.getcwd())
from main.configs.config import Config
from main.library.predictors.FCPE import FCPE
from main.library.predictors.RMVPE import RMVPE
from main.library.predictors.WORLD import PYWORLD
from main.library.algorithm.synthesizers import Synthesizer
from main.library.predictors.CREPE import predict, mean, median
from main.library.utils import check_predictors, check_embedders, load_audio, process_audio, merge_audio
bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000)
config = Config()
translations = config.translations
logger = logging.getLogger(__name__)
logger.propagate = False
for l in ["torch", "faiss", "httpx", "fairseq", "httpcore", "faiss.loader", "numba.core", "urllib3"]:
logging.getLogger(l).setLevel(logging.ERROR)
if logger.hasHandlers(): logger.handlers.clear()
else:
console_handler = logging.StreamHandler()
console_formatter = logging.Formatter(fmt="\n%(asctime)s.%(msecs)03d | %(levelname)s | %(module)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
console_handler.setFormatter(console_formatter)
console_handler.setLevel(logging.INFO)
file_handler = logging.handlers.RotatingFileHandler(os.path.join("assets", "logs", "convert.log"), maxBytes=5*1024*1024, backupCount=3, encoding='utf-8')
file_formatter = logging.Formatter(fmt="\n%(asctime)s.%(msecs)03d | %(levelname)s | %(module)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
file_handler.setFormatter(file_formatter)
file_handler.setLevel(logging.DEBUG)
logger.addHandler(console_handler)
logger.addHandler(file_handler)
logger.setLevel(logging.DEBUG)
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument("--pitch", type=int, default=0)
parser.add_argument("--filter_radius", type=int, default=3)
parser.add_argument("--index_rate", type=float, default=0.5)
parser.add_argument("--volume_envelope", type=float, default=1)
parser.add_argument("--protect", type=float, default=0.33)
parser.add_argument("--hop_length", type=int, default=64)
parser.add_argument("--f0_method", type=str, default="rmvpe")
parser.add_argument("--embedder_model", type=str, default="contentvec_base")
parser.add_argument("--input_path", type=str, required=True)
parser.add_argument("--output_path", type=str, default="./audios/output.wav")
parser.add_argument("--export_format", type=str, default="wav")
parser.add_argument("--pth_path", type=str, required=True)
parser.add_argument("--index_path", type=str)
parser.add_argument("--f0_autotune", type=lambda x: bool(strtobool(x)), default=False)
parser.add_argument("--f0_autotune_strength", type=float, default=1)
parser.add_argument("--clean_audio", type=lambda x: bool(strtobool(x)), default=False)
parser.add_argument("--clean_strength", type=float, default=0.7)
parser.add_argument("--resample_sr", type=int, default=0)
parser.add_argument("--split_audio", type=lambda x: bool(strtobool(x)), default=False)
parser.add_argument("--checkpointing", type=lambda x: bool(strtobool(x)), default=False)
return parser.parse_args()
def main():
args = parse_arguments()
pitch, filter_radius, index_rate, volume_envelope, protect, hop_length, f0_method, input_path, output_path, pth_path, index_path, f0_autotune, f0_autotune_strength, clean_audio, clean_strength, export_format, embedder_model, resample_sr, split_audio, checkpointing = args.pitch, args.filter_radius, args.index_rate, args.volume_envelope,args.protect, args.hop_length, args.f0_method, args.input_path, args.output_path, args.pth_path, args.index_path, args.f0_autotune, args.f0_autotune_strength, args.clean_audio, args.clean_strength, args.export_format, args.embedder_model, args.resample_sr, args.split_audio, args.checkpointing
log_data = {translations['pitch']: pitch, translations['filter_radius']: filter_radius, translations['index_strength']: index_rate, translations['volume_envelope']: volume_envelope, translations['protect']: protect, "Hop length": hop_length, translations['f0_method']: f0_method, translations['audio_path']: input_path, translations['output_path']: output_path.replace('wav', export_format), translations['model_path']: pth_path, translations['indexpath']: index_path, translations['autotune']: f0_autotune, translations['clear_audio']: clean_audio, translations['export_format']: export_format, translations['hubert_model']: embedder_model, translations['split_audio']: split_audio, translations['memory_efficient_training']: checkpointing}
if clean_audio: log_data[translations['clean_strength']] = clean_strength
if resample_sr != 0: log_data[translations['sample_rate']] = resample_sr
if f0_autotune: log_data[translations['autotune_rate_info']] = f0_autotune_strength
for key, value in log_data.items():
logger.debug(f"{key}: {value}")
check_predictors(f0_method)
check_embedders(embedder_model)
run_convert_script(pitch=pitch, filter_radius=filter_radius, index_rate=index_rate, volume_envelope=volume_envelope, protect=protect, hop_length=hop_length, f0_method=f0_method, input_path=input_path, output_path=output_path, pth_path=pth_path, index_path=index_path, f0_autotune=f0_autotune, f0_autotune_strength=f0_autotune_strength, clean_audio=clean_audio, clean_strength=clean_strength, export_format=export_format, embedder_model=embedder_model, resample_sr=resample_sr, split_audio=split_audio, checkpointing=checkpointing)
def run_batch_convert(params):
path, audio_temp, export_format, cut_files, pitch, filter_radius, index_rate, volume_envelope, protect, hop_length, f0_method, pth_path, index_path, f0_autotune, f0_autotune_strength, clean_audio, clean_strength, embedder_model, resample_sr, checkpointing = params["path"], params["audio_temp"], params["export_format"], params["cut_files"], params["pitch"], params["filter_radius"], params["index_rate"], params["volume_envelope"], params["protect"], params["hop_length"], params["f0_method"], params["pth_path"], params["index_path"], params["f0_autotune"], params["f0_autotune_strength"], params["clean_audio"], params["clean_strength"], params["embedder_model"], params["resample_sr"], params["checkpointing"]
segment_output_path = os.path.join(audio_temp, f"output_{cut_files.index(path)}.{export_format}")
if os.path.exists(segment_output_path): os.remove(segment_output_path)
VoiceConverter().convert_audio(pitch=pitch, filter_radius=filter_radius, index_rate=index_rate, volume_envelope=volume_envelope, protect=protect, hop_length=hop_length, f0_method=f0_method, audio_input_path=path, audio_output_path=segment_output_path, model_path=pth_path, index_path=index_path, f0_autotune=f0_autotune, f0_autotune_strength=f0_autotune_strength, clean_audio=clean_audio, clean_strength=clean_strength, export_format=export_format, embedder_model=embedder_model, resample_sr=resample_sr, checkpointing=checkpointing)
os.remove(path)
if os.path.exists(segment_output_path): return segment_output_path
else:
logger.warning(f"{translations['not_found_convert_file']}: {segment_output_path}")
sys.exit(1)
def run_convert_script(pitch, filter_radius, index_rate, volume_envelope, protect, hop_length, f0_method, input_path, output_path, pth_path, index_path, f0_autotune, f0_autotune_strength, clean_audio, clean_strength, export_format, embedder_model, resample_sr, split_audio, checkpointing):
cvt = VoiceConverter()
start_time = time.time()
pid_path = os.path.join("assets", "convert_pid.txt")
with open(pid_path, "w") as pid_file:
pid_file.write(str(os.getpid()))
if not pth_path or not os.path.exists(pth_path) or os.path.isdir(pth_path) or not pth_path.endswith(".pth"):
logger.warning(translations["provide_file"].format(filename=translations["model"]))
sys.exit(1)
output_dir = os.path.dirname(output_path) or output_path
if not os.path.exists(output_dir): os.makedirs(output_dir, exist_ok=True)
processed_segments = []
audio_temp = os.path.join("audios_temp")
if not os.path.exists(audio_temp) and split_audio: os.makedirs(audio_temp, exist_ok=True)
if os.path.isdir(input_path):
try:
logger.info(translations["convert_batch"])
audio_files = [f for f in os.listdir(input_path) if f.lower().endswith(("wav", "mp3", "flac", "ogg", "opus", "m4a", "mp4", "aac", "alac", "wma", "aiff", "webm", "ac3"))]
if not audio_files:
logger.warning(translations["not_found_audio"])
sys.exit(1)
logger.info(translations["found_audio"].format(audio_files=len(audio_files)))
for audio in audio_files:
audio_path = os.path.join(input_path, audio)
output_audio = os.path.join(input_path, os.path.splitext(audio)[0] + f"_output.{export_format}")
if split_audio:
try:
cut_files, time_stamps = process_audio(logger, audio_path, audio_temp)
params_list = [{"path": path, "audio_temp": audio_temp, "export_format": export_format, "cut_files": cut_files, "pitch": pitch, "filter_radius": filter_radius, "index_rate": index_rate, "volume_envelope": volume_envelope, "protect": protect, "hop_length": hop_length, "f0_method": f0_method, "pth_path": pth_path, "index_path": index_path, "f0_autotune": f0_autotune, "f0_autotune_strength": f0_autotune_strength, "clean_audio": clean_audio, "clean_strength": clean_strength, "embedder_model": embedder_model, "resample_sr": resample_sr, "checkpointing": checkpointing} for path in cut_files]
with tqdm(total=len(params_list), desc=translations["convert_audio"], ncols=100, unit="a") as pbar:
for params in params_list:
results = run_batch_convert(params)
processed_segments.append(results)
pbar.update(1)
logger.debug(pbar.format_meter(pbar.n, pbar.total, pbar.format_dict["elapsed"]))
merge_audio(processed_segments, time_stamps, audio_path, output_audio, export_format)
except Exception as e:
logger.error(translations["error_convert_batch"].format(e=e))
finally:
if os.path.exists(audio_temp): shutil.rmtree(audio_temp, ignore_errors=True)
else:
try:
logger.info(f"{translations['convert_audio']} '{audio_path}'...")
if os.path.exists(output_audio): os.remove(output_audio)
with tqdm(total=1, desc=translations["convert_audio"], ncols=100, unit="a") as pbar:
cvt.convert_audio(pitch=pitch, filter_radius=filter_radius, index_rate=index_rate, volume_envelope=volume_envelope, protect=protect, hop_length=hop_length, f0_method=f0_method, audio_input_path=audio_path, audio_output_path=output_audio, model_path=pth_path, index_path=index_path, f0_autotune=f0_autotune, f0_autotune_strength=f0_autotune_strength, clean_audio=clean_audio, clean_strength=clean_strength, export_format=export_format, embedder_model=embedder_model, resample_sr=resample_sr, checkpointing=checkpointing)
pbar.update(1)
logger.debug(pbar.format_meter(pbar.n, pbar.total, pbar.format_dict["elapsed"]))
except Exception as e:
logger.error(translations["error_convert"].format(e=e))
elapsed_time = time.time() - start_time
logger.info(translations["convert_batch_success"].format(elapsed_time=f"{elapsed_time:.2f}", output_path=output_path.replace('wav', export_format)))
except Exception as e:
logger.error(translations["error_convert_batch_2"].format(e=e))
else:
logger.info(f"{translations['convert_audio']} '{input_path}'...")
if not os.path.exists(input_path):
logger.warning(translations["not_found_audio"])
sys.exit(1)
if os.path.isdir(output_path): output_path = os.path.join(output_path, f"output.{export_format}")
if os.path.exists(output_path): os.remove(output_path)
if split_audio:
try:
cut_files, time_stamps = process_audio(logger, input_path, audio_temp)
params_list = [{"path": path, "audio_temp": audio_temp, "export_format": export_format, "cut_files": cut_files, "pitch": pitch, "filter_radius": filter_radius, "index_rate": index_rate, "volume_envelope": volume_envelope, "protect": protect, "hop_length": hop_length, "f0_method": f0_method, "pth_path": pth_path, "index_path": index_path, "f0_autotune": f0_autotune, "f0_autotune_strength": f0_autotune_strength, "clean_audio": clean_audio, "clean_strength": clean_strength, "embedder_model": embedder_model, "resample_sr": resample_sr, "checkpointing": checkpointing} for path in cut_files]
with tqdm(total=len(params_list), desc=translations["convert_audio"], ncols=100, unit="a") as pbar:
for params in params_list:
results = run_batch_convert(params)
processed_segments.append(results)
pbar.update(1)
logger.debug(pbar.format_meter(pbar.n, pbar.total, pbar.format_dict["elapsed"]))
merge_audio(processed_segments, time_stamps, input_path, output_path.replace("wav", export_format), export_format)
except Exception as e:
logger.error(translations["error_convert_batch"].format(e=e))
finally:
if os.path.exists(audio_temp): shutil.rmtree(audio_temp, ignore_errors=True)
else:
try:
with tqdm(total=1, desc=translations["convert_audio"], ncols=100, unit="a") as pbar:
cvt.convert_audio(pitch=pitch, filter_radius=filter_radius, index_rate=index_rate, volume_envelope=volume_envelope, protect=protect, hop_length=hop_length, f0_method=f0_method, audio_input_path=input_path, audio_output_path=output_path, model_path=pth_path, index_path=index_path, f0_autotune=f0_autotune, f0_autotune_strength=f0_autotune_strength, clean_audio=clean_audio, clean_strength=clean_strength, export_format=export_format, embedder_model=embedder_model, resample_sr=resample_sr, checkpointing=checkpointing)
pbar.update(1)
logger.debug(pbar.format_meter(pbar.n, pbar.total, pbar.format_dict["elapsed"]))
except Exception as e:
logger.error(translations["error_convert"].format(e=e))
if os.path.exists(pid_path): os.remove(pid_path)
elapsed_time = time.time() - start_time
logger.info(translations["convert_audio_success"].format(input_path=input_path, elapsed_time=f"{elapsed_time:.2f}", output_path=output_path.replace('wav', export_format)))
def change_rms(source_audio, source_rate, target_audio, target_rate, rate):
rms2 = F.interpolate(torch.from_numpy(librosa.feature.rms(y=target_audio, frame_length=target_rate // 2 * 2, hop_length=target_rate // 2)).float().unsqueeze(0), size=target_audio.shape[0], mode="linear").squeeze()
return (target_audio * (torch.pow(F.interpolate(torch.from_numpy(librosa.feature.rms(y=source_audio, frame_length=source_rate // 2 * 2, hop_length=source_rate // 2)).float().unsqueeze(0), size=target_audio.shape[0], mode="linear").squeeze(), 1 - rate) * torch.pow(torch.maximum(rms2, torch.zeros_like(rms2) + 1e-6), rate - 1)).numpy())
class Autotune:
def __init__(self, ref_freqs):
self.ref_freqs = ref_freqs
self.note_dict = self.ref_freqs
def autotune_f0(self, f0, f0_autotune_strength):
autotuned_f0 = np.zeros_like(f0)
for i, freq in enumerate(f0):
autotuned_f0[i] = freq + (min(self.note_dict, key=lambda x: abs(x - freq)) - freq) * f0_autotune_strength
return autotuned_f0
class VC:
def __init__(self, tgt_sr, config):
self.x_pad = config.x_pad
self.x_query = config.x_query
self.x_center = config.x_center
self.x_max = config.x_max
self.sample_rate = 16000
self.window = 160
self.t_pad = self.sample_rate * self.x_pad
self.t_pad_tgt = tgt_sr * self.x_pad
self.t_pad2 = self.t_pad * 2
self.t_query = self.sample_rate * self.x_query
self.t_center = self.sample_rate * self.x_center
self.t_max = self.sample_rate * self.x_max
self.time_step = self.window / self.sample_rate * 1000
self.f0_min = 50
self.f0_max = 1100
self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700)
self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700)
self.device = config.device
self.ref_freqs = [49.00, 51.91, 55.00, 58.27, 61.74, 65.41, 69.30, 73.42, 77.78, 82.41, 87.31, 92.50, 98.00, 103.83, 110.00, 116.54, 123.47, 130.81, 138.59, 146.83, 155.56, 164.81, 174.61, 185.00, 196.00, 207.65, 220.00, 233.08, 246.94, 261.63, 277.18, 293.66, 311.13, 329.63, 349.23, 369.99, 392.00, 415.30, 440.00, 466.16, 493.88, 523.25, 554.37, 587.33, 622.25, 659.25, 698.46, 739.99, 783.99, 830.61, 880.00, 932.33, 987.77, 1046.50]
self.autotune = Autotune(self.ref_freqs)
self.note_dict = self.autotune.note_dict
def get_providers(self):
ort_providers = onnxruntime.get_available_providers()
if "CUDAExecutionProvider" in ort_providers: providers = ["CUDAExecutionProvider"]
elif "CoreMLExecutionProvider" in ort_providers: providers = ["CoreMLExecutionProvider"]
else: providers = ["CPUExecutionProvider"]
return providers
def get_f0_pm(self, x, p_len):
f0 = (parselmouth.Sound(x, self.sample_rate).to_pitch_ac(time_step=self.window / self.sample_rate * 1000 / 1000, voicing_threshold=0.6, pitch_floor=self.f0_min, pitch_ceiling=self.f0_max).selected_array["frequency"])
pad_size = (p_len - len(f0) + 1) // 2
if pad_size > 0 or p_len - len(f0) - pad_size > 0: f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant")
return f0
def get_f0_mangio_crepe(self, x, p_len, hop_length, model="full", onnx=False):
providers = self.get_providers() if onnx else None
x = x.astype(np.float32)
x /= np.quantile(np.abs(x), 0.999)
audio = torch.unsqueeze(torch.from_numpy(x).to(self.device, copy=True), dim=0)
if audio.ndim == 2 and audio.shape[0] > 1: audio = torch.mean(audio, dim=0, keepdim=True).detach()
p_len = p_len or x.shape[0] // hop_length
source = np.array(predict(audio.detach(), self.sample_rate, hop_length, self.f0_min, self.f0_max, model, batch_size=hop_length * 2, device=self.device, pad=True, providers=providers, onnx=onnx).squeeze(0).cpu().float().numpy())
source[source < 0.001] = np.nan
return np.nan_to_num(np.interp(np.arange(0, len(source) * p_len, len(source)) / p_len, np.arange(0, len(source)), source))
def get_f0_crepe(self, x, model="full", onnx=False):
providers = self.get_providers() if onnx else None
f0, pd = predict(torch.tensor(np.copy(x))[None].float(), self.sample_rate, self.window, self.f0_min, self.f0_max, model, batch_size=512, device=self.device, return_periodicity=True, providers=providers, onnx=onnx)
f0, pd = mean(f0, 3), median(pd, 3)
f0[pd < 0.1] = 0
return f0[0].cpu().numpy()
def get_f0_fcpe(self, x, p_len, hop_length, onnx=False, legacy=False):
providers = self.get_providers() if onnx else None
model_fcpe = FCPE(os.path.join("assets", "models", "predictors", "fcpe" + (".onnx" if onnx else ".pt")), hop_length=int(hop_length), f0_min=int(self.f0_min), f0_max=int(self.f0_max), dtype=torch.float32, device=self.device, sample_rate=self.sample_rate, threshold=0.03, providers=providers, onnx=onnx) if legacy else FCPE(os.path.join("assets", "models", "predictors", "fcpe" + (".onnx" if onnx else ".pt")), hop_length=self.window, f0_min=0, f0_max=8000, dtype=torch.float32, device=self.device, sample_rate=self.sample_rate, threshold=0.006, providers=providers, onnx=onnx)
f0 = model_fcpe.compute_f0(x, p_len=p_len)
del model_fcpe
return f0
def get_f0_rmvpe(self, x, legacy=False, onnx=False):
providers = self.get_providers() if onnx else None
rmvpe_model = RMVPE(os.path.join("assets", "models", "predictors", "rmvpe" + (".onnx" if onnx else ".pt")), device=self.device, onnx=onnx, providers=providers)
f0 = rmvpe_model.infer_from_audio_with_pitch(x, thred=0.03, f0_min=self.f0_min, f0_max=self.f0_max) if legacy else rmvpe_model.infer_from_audio(x, thred=0.03)
del rmvpe_model
return f0
def get_f0_pyworld(self, x, filter_radius, model="harvest"):
pw = PYWORLD()
if model == "harvest": f0, t = pw.harvest(x.astype(np.double), fs=self.sample_rate, f0_ceil=self.f0_max, f0_floor=self.f0_min, frame_period=10)
elif model == "dio": f0, t = pw.dio(x.astype(np.double), fs=self.sample_rate, f0_ceil=self.f0_max, f0_floor=self.f0_min, frame_period=10)
else: raise ValueError(translations["method_not_valid"])
f0 = pw.stonemask(x.astype(np.double), self.sample_rate, t, f0)
if filter_radius > 2 or model == "dio": f0 = signal.medfilt(f0, 3)
return f0
def get_f0_yin(self, x, hop_length, p_len):
source = np.array(librosa.yin(x.astype(np.double), sr=self.sample_rate, fmin=self.f0_min, fmax=self.f0_max, hop_length=hop_length))
source[source < 0.001] = np.nan
return np.nan_to_num(np.interp(np.arange(0, len(source) * p_len, len(source)) / p_len, np.arange(0, len(source)), source))
def get_f0_pyin(self, x, hop_length, p_len):
f0, _, _ = librosa.pyin(x.astype(np.double), fmin=self.f0_min, fmax=self.f0_max, sr=self.sample_rate, hop_length=hop_length)
source = np.array(f0)
source[source < 0.001] = np.nan
return np.nan_to_num(np.interp(np.arange(0, len(source) * p_len, len(source)) / p_len, np.arange(0, len(source)), source))
def get_f0_hybrid(self, methods_str, x, p_len, hop_length, filter_radius):
methods_str = re.search("hybrid\[(.+)\]", methods_str)
if methods_str: methods = [method.strip() for method in methods_str.group(1).split("+")]
f0_computation_stack, resampled_stack = [], []
logger.debug(translations["hybrid_methods"].format(methods=methods))
x = x.astype(np.float32)
x /= np.quantile(np.abs(x), 0.999)
for method in methods:
f0 = None
if method == "pm": f0 = self.get_f0_pm(x, p_len)
elif method == "dio": f0 = self.get_f0_pyworld(x, filter_radius, "dio")
elif method == "mangio-crepe-tiny": f0 = self.get_f0_mangio_crepe(x, p_len, int(hop_length), "tiny")
elif method == "mangio-crepe-tiny-onnx": f0 = self.get_f0_mangio_crepe(x, p_len, int(hop_length), "tiny", onnx=True)
elif method == "mangio-crepe-small": f0 = self.get_f0_mangio_crepe(x, p_len, int(hop_length), "small")
elif method == "mangio-crepe-small-onnx": f0 = self.get_f0_mangio_crepe(x, p_len, int(hop_length), "small", onnx=True)
elif method == "mangio-crepe-medium": f0 = self.get_f0_mangio_crepe(x, p_len, int(hop_length), "medium")
elif method == "mangio-crepe-medium-onnx": f0 = self.get_f0_mangio_crepe(x, p_len, int(hop_length), "medium", onnx=True)
elif method == "mangio-crepe-large": f0 = self.get_f0_mangio_crepe(x, p_len, int(hop_length), "large")
elif method == "mangio-crepe-large-onnx": f0 = self.get_f0_mangio_crepe(x, p_len, int(hop_length), "large", onnx=True)
elif method == "mangio-crepe-full": f0 = self.get_f0_mangio_crepe(x, p_len, int(hop_length), "full")
elif method == "mangio-crepe-full-onnx": f0 = self.get_f0_mangio_crepe(x, p_len, int(hop_length), "full", onnx=True)
elif method == "crepe-tiny": f0 = self.get_f0_crepe(x, "tiny")
elif method == "crepe-tiny-onnx": f0 = self.get_f0_crepe(x, "tiny", onnx=True)
elif method == "crepe-small": f0 = self.get_f0_crepe(x, "small")
elif method == "crepe-small-onnx": f0 = self.get_f0_crepe(x, "small", onnx=True)
elif method == "crepe-medium": f0 = self.get_f0_crepe(x, "medium")
elif method == "crepe-medium-onnx": f0 = self.get_f0_crepe(x, "medium", onnx=True)
elif method == "crepe-large": f0 = self.get_f0_crepe(x, "large")
elif method == "crepe-large-onnx": f0 = self.get_f0_crepe(x, "large", onnx=True)
elif method == "crepe-full": f0 = self.get_f0_crepe(x, "full")
elif method == "crepe-full-onnx": f0 = self.get_f0_crepe(x, "full", onnx=True)
elif method == "fcpe": f0 = self.get_f0_fcpe(x, p_len, int(hop_length))
elif method == "fcpe-onnx": f0 = self.get_f0_fcpe(x, p_len, int(hop_length), onnx=True)
elif method == "fcpe-legacy": f0 = self.get_f0_fcpe(x, p_len, int(hop_length), legacy=True)
elif method == "fcpe-legacy-onnx": f0 = self.get_f0_fcpe(x, p_len, int(hop_length), onnx=True, legacy=True)
elif method == "rmvpe": f0 = self.get_f0_rmvpe(x)
elif method == "rmvpe-onnx": f0 = self.get_f0_rmvpe(x, onnx=True)
elif method == "rmvpe-legacy": f0 = self.get_f0_rmvpe(x, legacy=True)
elif method == "rmvpe-legacy-onnx": f0 = self.get_f0_rmvpe(x, legacy=True, onnx=True)
elif method == "harvest": f0 = self.get_f0_pyworld(x, filter_radius, "harvest")
elif method == "yin": f0 = self.get_f0_yin(x, int(hop_length), p_len)
elif method == "pyin": f0 = self.get_f0_pyin(x, int(hop_length), p_len)
else: raise ValueError(translations["method_not_valid"])
f0_computation_stack.append(f0)
for f0 in f0_computation_stack:
resampled_stack.append(np.interp(np.linspace(0, len(f0), p_len), np.arange(len(f0)), f0))
return resampled_stack[0] if len(resampled_stack) == 1 else np.nanmedian(np.vstack(resampled_stack), axis=0)
def get_f0(self, x, p_len, pitch, f0_method, filter_radius, hop_length, f0_autotune, f0_autotune_strength):
if f0_method == "pm": f0 = self.get_f0_pm(x, p_len)
elif f0_method == "dio": f0 = self.get_f0_pyworld(x, filter_radius, "dio")
elif f0_method == "mangio-crepe-tiny": f0 = self.get_f0_mangio_crepe(x, p_len, int(hop_length), "tiny")
elif f0_method == "mangio-crepe-tiny-onnx": f0 = self.get_f0_mangio_crepe(x, p_len, int(hop_length), "tiny", onnx=True)
elif f0_method == "mangio-crepe-small": f0 = self.get_f0_mangio_crepe(x, p_len, int(hop_length), "small")
elif f0_method == "mangio-crepe-small-onnx": f0 = self.get_f0_mangio_crepe(x, p_len, int(hop_length), "small", onnx=True)
elif f0_method == "mangio-crepe-medium": f0 = self.get_f0_mangio_crepe(x, p_len, int(hop_length), "medium")
elif f0_method == "mangio-crepe-medium-onnx": f0 = self.get_f0_mangio_crepe(x, p_len, int(hop_length), "medium", onnx=True)
elif f0_method == "mangio-crepe-large": f0 = self.get_f0_mangio_crepe(x, p_len, int(hop_length), "large")
elif f0_method == "mangio-crepe-large-onnx": f0 = self.get_f0_mangio_crepe(x, p_len, int(hop_length), "large", onnx=True)
elif f0_method == "mangio-crepe-full": f0 = self.get_f0_mangio_crepe(x, p_len, int(hop_length), "full")
elif f0_method == "mangio-crepe-full-onnx": f0 = self.get_f0_mangio_crepe(x, p_len, int(hop_length), "full", onnx=True)
elif f0_method == "crepe-tiny": f0 = self.get_f0_crepe(x, "tiny")
elif f0_method == "crepe-tiny-onnx": f0 = self.get_f0_crepe(x, "tiny", onnx=True)
elif f0_method == "crepe-small": f0 = self.get_f0_crepe(x, "small")
elif f0_method == "crepe-small-onnx": f0 = self.get_f0_crepe(x, "small", onnx=True)
elif f0_method == "crepe-medium": f0 = self.get_f0_crepe(x, "medium")
elif f0_method == "crepe-medium-onnx": f0 = self.get_f0_crepe(x, "medium", onnx=True)
elif f0_method == "crepe-large": f0 = self.get_f0_crepe(x, "large")
elif f0_method == "crepe-large-onnx": f0 = self.get_f0_crepe(x, "large", onnx=True)
elif f0_method == "crepe-full": f0 = self.get_f0_crepe(x, "full")
elif f0_method == "crepe-full-onnx": f0 = self.get_f0_crepe(x, "full", onnx=True)
elif f0_method == "fcpe": f0 = self.get_f0_fcpe(x, p_len, int(hop_length))
elif f0_method == "fcpe-onnx": f0 = self.get_f0_fcpe(x, p_len, int(hop_length), onnx=True)
elif f0_method == "fcpe-legacy": f0 = self.get_f0_fcpe(x, p_len, int(hop_length), legacy=True)
elif f0_method == "fcpe-legacy-onnx": f0 = self.get_f0_fcpe(x, p_len, int(hop_length), onnx=True, legacy=True)
elif f0_method == "rmvpe": f0 = self.get_f0_rmvpe(x)
elif f0_method == "rmvpe-onnx": f0 = self.get_f0_rmvpe(x, onnx=True)
elif f0_method == "rmvpe-legacy": f0 = self.get_f0_rmvpe(x, legacy=True)
elif f0_method == "rmvpe-legacy-onnx": f0 = self.get_f0_rmvpe(x, legacy=True, onnx=True)
elif f0_method == "harvest": f0 = self.get_f0_pyworld(x, filter_radius, "harvest")
elif f0_method == "yin": f0 = self.get_f0_yin(x, int(hop_length), p_len)
elif f0_method == "pyin": f0 = self.get_f0_pyin(x, int(hop_length), p_len)
elif "hybrid" in f0_method: f0 = self.get_f0_hybrid(f0_method, x, p_len, hop_length, filter_radius)
else: raise ValueError(translations["method_not_valid"])
if f0_autotune: f0 = Autotune.autotune_f0(self, f0, f0_autotune_strength)
f0 *= pow(2, pitch / 12)
f0_mel = 1127 * np.log(1 + f0 / 700)
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - self.f0_mel_min) * 254 / (self.f0_mel_max - self.f0_mel_min) + 1
f0_mel[f0_mel <= 1] = 1
f0_mel[f0_mel > 255] = 255
return np.rint(f0_mel).astype(np.int32), f0.copy()
def voice_conversion(self, model, net_g, sid, audio0, pitch, pitchf, index, big_npy, index_rate, version, protect):
pitch_guidance = pitch != None and pitchf != None
feats = torch.from_numpy(audio0).float()
if feats.dim() == 2: feats = feats.mean(-1)
assert feats.dim() == 1, feats.dim()
feats = feats.view(1, -1)
padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
inputs = {"source": feats.to(self.device), "padding_mask": padding_mask, "output_layer": 9 if version == "v1" else 12}
with torch.no_grad():
logits = model.extract_features(**inputs)
feats = model.final_proj(logits[0]) if version == "v1" else logits[0]
if protect < 0.5 and pitch_guidance: feats0 = feats.clone()
if (not isinstance(index, type(None)) and not isinstance(big_npy, type(None)) and index_rate != 0):
npy = feats[0].cpu().numpy()
score, ix = index.search(npy, k=8)
weight = np.square(1 / score)
weight /= weight.sum(axis=1, keepdims=True)
npy = np.sum(big_npy[ix] * np.expand_dims(weight, axis=2), axis=1)
feats = (torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate + (1 - index_rate) * feats)
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
if protect < 0.5 and pitch_guidance: feats0 = F.interpolate(feats0.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
p_len = audio0.shape[0] // self.window
if feats.shape[1] < p_len:
p_len = feats.shape[1]
if pitch_guidance:
pitch = pitch[:, :p_len]
pitchf = pitchf[:, :p_len]
if protect < 0.5 and pitch_guidance:
pitchff = pitchf.clone()
pitchff[pitchf > 0] = 1
pitchff[pitchf < 1] = protect
pitchff = pitchff.unsqueeze(-1)
feats = feats * pitchff + feats0 * (1 - pitchff)
feats = feats.to(feats0.dtype)
p_len = torch.tensor([p_len], device=self.device).long()
audio1 = ((net_g.infer(feats, p_len, pitch if pitch_guidance else None, pitchf if pitch_guidance else None, sid)[0][0, 0]).data.cpu().float().numpy())
del feats, p_len, padding_mask
if torch.cuda.is_available(): torch.cuda.empty_cache()
return audio1
def pipeline(self, model, net_g, sid, audio, pitch, f0_method, file_index, index_rate, pitch_guidance, filter_radius, tgt_sr, resample_sr, volume_envelope, version, protect, hop_length, f0_autotune, f0_autotune_strength):
if file_index != "" and os.path.exists(file_index) and index_rate != 0:
try:
index = faiss.read_index(file_index)
big_npy = index.reconstruct_n(0, index.ntotal)
except Exception as e:
logger.error(translations["read_faiss_index_error"].format(e=e))
index = big_npy = None
else: index = big_npy = None
audio = signal.filtfilt(bh, ah, audio)
audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect")
opt_ts, audio_opt = [], []
if audio_pad.shape[0] > self.t_max:
audio_sum = np.zeros_like(audio)
for i in range(self.window):
audio_sum += audio_pad[i : i - self.window]
for t in range(self.t_center, audio.shape[0], self.t_center):
opt_ts.append(t - self.t_query + np.where(np.abs(audio_sum[t - self.t_query : t + self.t_query]) == np.abs(audio_sum[t - self.t_query : t + self.t_query]).min())[0][0])
s = 0
t = None
audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect")
sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
p_len = audio_pad.shape[0] // self.window
if pitch_guidance:
pitch, pitchf = self.get_f0(audio_pad, p_len, pitch, f0_method, filter_radius, hop_length, f0_autotune, f0_autotune_strength)
pitch, pitchf = pitch[:p_len], pitchf[:p_len]
if self.device == "mps": pitchf = pitchf.astype(np.float32)
pitch, pitchf = torch.tensor(pitch, device=self.device).unsqueeze(0).long(), torch.tensor(pitchf, device=self.device).unsqueeze(0).float()
for t in opt_ts:
t = t // self.window * self.window
audio_opt.append(self.voice_conversion(model, net_g, sid, audio_pad[s : t + self.t_pad2 + self.window], pitch[:, s // self.window : (t + self.t_pad2) // self.window] if pitch_guidance else None, pitchf[:, s // self.window : (t + self.t_pad2) // self.window] if pitch_guidance else None, index, big_npy, index_rate, version, protect)[self.t_pad_tgt : -self.t_pad_tgt])
s = t
audio_opt.append(self.voice_conversion(model, net_g, sid, audio_pad[t:], (pitch[:, t // self.window :] if t is not None else pitch) if pitch_guidance else None, (pitchf[:, t // self.window :] if t is not None else pitchf) if pitch_guidance else None, index, big_npy, index_rate, version, protect)[self.t_pad_tgt : -self.t_pad_tgt])
audio_opt = np.concatenate(audio_opt)
if volume_envelope != 1: audio_opt = change_rms(audio, self.sample_rate, audio_opt, tgt_sr, volume_envelope)
if resample_sr >= self.sample_rate and tgt_sr != resample_sr: audio_opt = librosa.resample(audio_opt, orig_sr=tgt_sr, target_sr=resample_sr, res_type="soxr_vhq")
audio_max = np.abs(audio_opt).max() / 0.99
if audio_max > 1: audio_opt /= audio_max
if pitch_guidance: del pitch, pitchf
del sid
if torch.cuda.is_available(): torch.cuda.empty_cache()
return audio_opt
class VoiceConverter:
def __init__(self):
self.config = config
self.hubert_model = None
self.tgt_sr = None
self.net_g = None
self.vc = None
self.cpt = None
self.version = None
self.n_spk = None
self.use_f0 = None
self.loaded_model = None
self.vocoder = "Default"
self.checkpointing = False
def load_embedders(self, embedder_model):
try:
models, _, _ = checkpoint_utils.load_model_ensemble_and_task([os.path.join("assets", "models", "embedders", embedder_model + '.pt')], suffix="")
except Exception as e:
logger.error(translations["read_model_error"].format(e=e))
self.hubert_model = models[0].to(self.config.device).float().eval()
def convert_audio(self, audio_input_path, audio_output_path, model_path, index_path, embedder_model, pitch, f0_method, index_rate, volume_envelope, protect, hop_length, f0_autotune, f0_autotune_strength, filter_radius, clean_audio, clean_strength, export_format, resample_sr = 0, sid = 0, checkpointing = False):
try:
self.get_vc(model_path, sid)
audio = load_audio(audio_input_path)
self.checkpointing = checkpointing
audio_max = np.abs(audio).max() / 0.95
if audio_max > 1: audio /= audio_max
if not self.hubert_model:
if not os.path.exists(os.path.join("assets", "models", "embedders", embedder_model + '.pt')): raise FileNotFoundError(f"{translations['not_found'].format(name=translations['model'])}: {embedder_model}")
self.load_embedders(embedder_model)
if self.tgt_sr != resample_sr >= 16000: self.tgt_sr = resample_sr
target_sr = min([8000, 11025, 12000, 16000, 22050, 24000, 32000, 44100, 48000, 96000], key=lambda x: abs(x - self.tgt_sr))
audio_output = self.vc.pipeline(model=self.hubert_model, net_g=self.net_g, sid=sid, audio=audio, pitch=pitch, f0_method=f0_method, file_index=(index_path.strip().strip('"').strip("\n").strip('"').strip().replace("trained", "added")), index_rate=index_rate, pitch_guidance=self.use_f0, filter_radius=filter_radius, tgt_sr=self.tgt_sr, resample_sr=target_sr, volume_envelope=volume_envelope, version=self.version, protect=protect, hop_length=hop_length, f0_autotune=f0_autotune, f0_autotune_strength=f0_autotune_strength)
if clean_audio:
from main.tools.noisereduce import reduce_noise
audio_output = reduce_noise(y=audio_output, sr=target_sr, prop_decrease=clean_strength)
sf.write(audio_output_path, audio_output, target_sr, format=export_format)
except Exception as e:
logger.error(translations["error_convert"].format(e=e))
import traceback
logger.debug(traceback.format_exc())
def get_vc(self, weight_root, sid):
if sid == "" or sid == []:
self.cleanup()
if torch.cuda.is_available(): torch.cuda.empty_cache()
if not self.loaded_model or self.loaded_model != weight_root:
self.load_model(weight_root)
if self.cpt is not None: self.setup()
self.loaded_model = weight_root
def cleanup(self):
if self.hubert_model is not None:
del self.net_g, self.n_spk, self.vc, self.hubert_model, self.tgt_sr
self.hubert_model = self.net_g = self.n_spk = self.vc = self.tgt_sr = None
if torch.cuda.is_available(): torch.cuda.empty_cache()
del self.net_g, self.cpt
if torch.cuda.is_available(): torch.cuda.empty_cache()
self.cpt = None
def load_model(self, weight_root):
self.cpt = (torch.load(weight_root, map_location="cpu") if os.path.isfile(weight_root) else None)
def setup(self):
if self.cpt is not None:
self.tgt_sr = self.cpt["config"][-1]
self.cpt["config"][-3] = self.cpt["weight"]["emb_g.weight"].shape[0]
self.use_f0 = self.cpt.get("f0", 1)
self.version = self.cpt.get("version", "v1")
self.vocoder = self.cpt.get("vocoder", "Default")
self.text_enc_hidden_dim = 768 if self.version == "v2" else 256
self.net_g = Synthesizer(*self.cpt["config"], use_f0=self.use_f0, text_enc_hidden_dim=self.text_enc_hidden_dim, vocoder=self.vocoder, checkpointing=self.checkpointing)
del self.net_g.enc_q
self.net_g.load_state_dict(self.cpt["weight"], strict=False)
self.net_g.eval().to(self.config.device).float()
self.vc = VC(self.tgt_sr, self.config)
self.n_spk = self.cpt["config"][-3]
if __name__ == "__main__": main()