AnhP's picture
Upload 82 files
e4d8df5 verified
raw
history blame
2.62 kB
import math
import numba as nb
import numpy as np
def stonemask(x, fs, temporal_positions, f0):
refined_f0 = np.copy(f0)
for i in range(len(temporal_positions)):
if f0[i] != 0:
refined_f0[i] = get_refined_f0(x, fs, temporal_positions[i], f0[i])
if abs(refined_f0[i] - f0[i]) / f0[i] > 0.2: refined_f0[i] = f0[i]
return np.array(refined_f0, dtype=np.float32)
def get_refined_f0(x, fs, current_time, current_f0):
f0_initial = current_f0
half_window_length = np.ceil(3 * fs / f0_initial / 2)
window_length_in_time = (2 * half_window_length + 1) / fs
base_time = np.arange(-half_window_length, half_window_length + 1) / fs
fft_size = 2 ** math.ceil(math.log((half_window_length * 2 + 1), 2) + 1)
base_time = np.array([float("{0:.4f}".format(elm)) for elm in base_time])
index_raw = round_matlab((current_time + base_time) * fs)
window_time = ((index_raw - 1) / fs) - current_time
main_window = 0.42 + 0.5 * np.cos(2 * math.pi * window_time / window_length_in_time) + 0.08 * np.cos(4 * math.pi * window_time / window_length_in_time)
index = np.array(np.maximum(1, np.minimum(len(x), index_raw)), dtype=int)
spectrum = np.fft.fft(x[index - 1] * main_window, fft_size)
diff_spectrum = np.fft.fft(x[index - 1] * (-(np.diff(np.r_[0, main_window]) + np.diff(np.r_[main_window, 0])) / 2), fft_size)
power_spectrum = np.abs(spectrum) ** 2
from sys import float_info
power_spectrum[power_spectrum == 0] = float_info.epsilon
instantaneous_frequency = (np.arange(fft_size) / fft_size * fs) + (np.real(spectrum) * np.imag(diff_spectrum) - np.imag(spectrum) * np.real(diff_spectrum)) / power_spectrum * fs / 2 / math.pi
trim_index = np.array([1, 2])
index_list_trim = np.array(round_matlab(f0_initial * fft_size / fs * trim_index) + 1, int)
amp_list = np.sqrt(power_spectrum[index_list_trim - 1])
f0_initial = np.sum(amp_list * instantaneous_frequency[index_list_trim - 1]) / np.sum(amp_list * trim_index)
if f0_initial < 0: return 0
trim_index = np.array([1, 2, 3, 4, 5, 6])
index_list_trim = np.array(round_matlab(f0_initial * fft_size / fs * trim_index) + 1, int)
amp_list = np.sqrt(power_spectrum[index_list_trim - 1])
return np.sum(amp_list * instantaneous_frequency[index_list_trim - 1]) / np.sum(amp_list * trim_index)
@nb.jit((nb.float64[:],), nopython=True, cache=True)
def round_matlab(x: np.ndarray) -> np.ndarray:
y = x.copy()
y[x > 0] += 0.5
y[x <= 0] -= 0.5
return y