AnhP's picture
Upload 170 files
1e4a2ab verified
raw
history blame
11.4 kB
import os
import sys
import time
import yaml
import torch
import codecs
import hashlib
import requests
import onnxruntime
from importlib import import_module
now_dir = os.getcwd()
sys.path.append(now_dir)
from main.library import opencl
from main.tools.huggingface import HF_download_file
from main.app.variables import config, translations
class Separator:
def __init__(self, logger, model_file_dir=config.configs["uvr5_path"], output_dir=None, output_format="wav", output_bitrate=None, normalization_threshold=0.9, sample_rate=44100, mdx_params={"hop_length": 1024, "segment_size": 256, "overlap": 0.25, "batch_size": 1, "enable_denoise": False}, demucs_params={"segment_size": "Default", "shifts": 2, "overlap": 0.25, "segments_enabled": True}):
self.logger = logger
self.logger.info(translations["separator_info"].format(output_dir=output_dir, output_format=output_format))
self.model_file_dir = model_file_dir
self.output_dir = output_dir if output_dir is not None else now_dir
os.makedirs(self.model_file_dir, exist_ok=True)
os.makedirs(self.output_dir, exist_ok=True)
self.output_format = output_format if output_format is not None else "wav"
self.output_bitrate = output_bitrate
self.normalization_threshold = normalization_threshold
if normalization_threshold <= 0 or normalization_threshold > 1: raise ValueError
self.sample_rate = int(sample_rate)
self.arch_specific_params = {"MDX": mdx_params, "Demucs": demucs_params}
self.torch_device = None
self.torch_device_cpu = None
self.torch_device_mps = None
self.onnx_execution_provider = None
self.model_instance = None
self.model_friendly_name = None
self.setup_torch_device()
def setup_torch_device(self):
hardware_acceleration_enabled = False
ort_providers = onnxruntime.get_available_providers()
self.torch_device_cpu = torch.device("cpu")
if torch.cuda.is_available():
self.configure_cuda(ort_providers)
hardware_acceleration_enabled = True
elif opencl.is_available():
self.configure_amd(ort_providers)
hardware_acceleration_enabled = True
elif torch.backends.mps.is_available():
self.configure_mps(ort_providers)
hardware_acceleration_enabled = True
if not hardware_acceleration_enabled:
self.logger.info(translations["running_in_cpu"])
self.torch_device = self.torch_device_cpu
self.onnx_execution_provider = ["CPUExecutionProvider"]
def configure_cuda(self, ort_providers):
self.logger.info(translations["running_in_cuda"])
self.torch_device = torch.device("cuda")
if "CUDAExecutionProvider" in ort_providers:
self.logger.info(translations["onnx_have"].format(have='CUDAExecutionProvider'))
self.onnx_execution_provider = ["CUDAExecutionProvider"]
else: self.logger.warning(translations["onnx_not_have"].format(have='CUDAExecutionProvider'))
def configure_amd(self, ort_providers):
self.logger.info(translations["running_in_amd"])
self.torch_device = torch.device("ocl")
if "DmlExecutionProvider" in ort_providers:
self.logger.info(translations["onnx_have"].format(have='DmlExecutionProvider'))
self.onnx_execution_provider = ["DmlExecutionProvider"]
else: self.logger.warning(translations["onnx_not_have"].format(have='DmlExecutionProvider'))
def configure_mps(self, ort_providers):
self.logger.info(translations["set_torch_mps"])
self.torch_device_mps = torch.device("mps")
self.torch_device = self.torch_device_mps
if "CoreMLExecutionProvider" in ort_providers:
self.logger.info(translations["onnx_have"].format(have='CoreMLExecutionProvider'))
self.onnx_execution_provider = ["CoreMLExecutionProvider"]
else: self.logger.warning(translations["onnx_not_have"].format(have='CoreMLExecutionProvider'))
def get_model_hash(self, model_path):
try:
with open(model_path, "rb") as f:
f.seek(-10000 * 1024, 2)
return hashlib.md5(f.read()).hexdigest()
except IOError as e:
return hashlib.md5(open(model_path, "rb").read()).hexdigest()
def download_file_if_not_exists(self, url, output_path):
if os.path.isfile(output_path): return
HF_download_file(url, output_path)
def list_supported_model_files(self):
response = requests.get(codecs.decode("uggcf://uhttvatsnpr.pb/NauC/Ivrganzrfr-EIP-Cebwrpg/enj/znva/wfba/hie_zbqryf.wfba", "rot13"))
response.raise_for_status()
model_downloads_list = response.json()
return {"MDX": {**model_downloads_list["mdx_download_list"], **model_downloads_list["mdx_download_vip_list"]}, "Demucs": {key: value for key, value in model_downloads_list["demucs_download_list"].items() if key.startswith("Demucs v4")}}
def download_model_files(self, model_filename):
model_path = os.path.join(self.model_file_dir, model_filename)
supported_model_files_grouped = self.list_supported_model_files()
yaml_config_filename = None
for model_type, model_list in supported_model_files_grouped.items():
for model_friendly_name, model_download_list in model_list.items():
model_repo_url_prefix = codecs.decode("uggcf://uhttvatsnpr.pb/NauC/Ivrganzrfr-EIP-Cebwrpg/erfbyir/znva/hie5_zbqryf", "rot13")
if isinstance(model_download_list, str) and model_download_list == model_filename:
self.model_friendly_name = model_friendly_name
try:
self.download_file_if_not_exists(f"{model_repo_url_prefix}/MDX/{model_filename}", model_path)
except RuntimeError:
self.download_file_if_not_exists(f"{model_repo_url_prefix}/Demucs/{model_filename}", model_path)
return model_filename, model_type, model_friendly_name, model_path, yaml_config_filename
elif isinstance(model_download_list, dict):
this_model_matches_input_filename = False
for file_name, file_url in model_download_list.items():
if file_name == model_filename or file_url == model_filename: this_model_matches_input_filename = True
if this_model_matches_input_filename:
self.model_friendly_name = model_friendly_name
for config_key, config_value in model_download_list.items():
if config_value.startswith("http"): self.download_file_if_not_exists(config_value, os.path.join(self.model_file_dir, config_key))
elif config_key.endswith(".ckpt"):
self.download_file_if_not_exists(f"{model_repo_url_prefix}/Demucs/{config_key}", os.path.join(self.model_file_dir, config_key))
if model_filename.endswith(".yaml"):
model_filename = config_key
model_path = os.path.join(self.model_file_dir, f"{model_filename}")
yaml_config_filename = config_value
yaml_config_filepath = os.path.join(self.model_file_dir, yaml_config_filename)
self.download_file_if_not_exists(f"{model_repo_url_prefix}/mdx_c_configs/{yaml_config_filename}", yaml_config_filepath)
else: self.download_file_if_not_exists(f"{model_repo_url_prefix}/Demucs/{config_value}", os.path.join(self.model_file_dir, config_value))
return model_filename, model_type, model_friendly_name, model_path, yaml_config_filename
raise ValueError
def load_model_data_from_yaml(self, yaml_config_filename):
model_data_yaml_filepath = os.path.join(self.model_file_dir, yaml_config_filename) if not os.path.exists(yaml_config_filename) else yaml_config_filename
model_data = yaml.load(open(model_data_yaml_filepath, encoding="utf-8"), Loader=yaml.FullLoader)
if "roformer" in model_data_yaml_filepath: model_data["is_roformer"] = True
return model_data
def load_model_data_using_hash(self, model_path):
model_hash = self.get_model_hash(model_path)
mdx_model_data_path = codecs.decode("uggcf://uhttvatsnpr.pb/NauC/Ivrganzrfr-EIP-Cebwrpg/enj/znva/wfba/zbqry_qngn.wfba", "rot13")
response = requests.get(mdx_model_data_path)
response.raise_for_status()
mdx_model_data_object = response.json()
if model_hash in mdx_model_data_object: model_data = mdx_model_data_object[model_hash]
else: raise ValueError
return model_data
def load_model(self, model_filename):
self.logger.info(translations["loading_model"].format(model_filename=model_filename))
model_filename, model_type, model_friendly_name, model_path, yaml_config_filename = self.download_model_files(model_filename)
if model_path.lower().endswith(".yaml"): yaml_config_filename = model_path
common_params = {"logger": self.logger, "torch_device": self.torch_device, "torch_device_cpu": self.torch_device_cpu, "torch_device_mps": self.torch_device_mps, "onnx_execution_provider": self.onnx_execution_provider, "model_name": model_filename.split(".")[0], "model_path": model_path, "model_data": self.load_model_data_from_yaml(yaml_config_filename) if yaml_config_filename is not None else self.load_model_data_using_hash(model_path), "output_format": self.output_format, "output_bitrate": self.output_bitrate, "output_dir": self.output_dir, "normalization_threshold": self.normalization_threshold, "output_single_stem": None, "invert_using_spec": False, "sample_rate": self.sample_rate}
separator_classes = {"MDX": "mdx_separator.MDXSeparator", "Demucs": "demucs_separator.DemucsSeparator"}
if model_type not in self.arch_specific_params or model_type not in separator_classes: raise ValueError(translations["model_type_not_support"].format(model_type=model_type))
module_name, class_name = separator_classes[model_type].split(".")
separator_class = getattr(import_module(f"main.library.architectures.{module_name}"), class_name)
self.model_instance = separator_class(common_config=common_params, arch_config=self.arch_specific_params[model_type])
def separate(self, audio_file_path):
self.logger.info(f"{translations['starting_separator']}: {audio_file_path}")
separate_start_time = time.perf_counter()
output_files = self.model_instance.separate(audio_file_path)
self.model_instance.clear_gpu_cache()
self.model_instance.clear_file_specific_paths()
self.logger.debug(translations["separator_success_3"])
self.logger.info(f"{translations['separator_duration']}: {time.strftime('%H:%M:%S', time.gmtime(int(time.perf_counter() - separate_start_time)))}")
return output_files