AnhP's picture
Upload 170 files
1e4a2ab verified
raw
history blame
8.03 kB
import os
import sys
import time
import logging
import librosa
import argparse
import numpy as np
import torch.multiprocessing as mp
from tqdm import tqdm
from scipy import signal
from scipy.io import wavfile
from distutils.util import strtobool
from concurrent.futures import ProcessPoolExecutor, as_completed
sys.path.append(os.getcwd())
from main.library.utils import load_audio
from main.inference.preprocess.slicer2 import Slicer
from main.app.variables import config, logger, translations, configs
for l in ["numba.core.byteflow", "numba.core.ssa", "numba.core.interpreter"]:
logging.getLogger(l).setLevel(logging.ERROR)
OVERLAP, MAX_AMPLITUDE, ALPHA, HIGH_PASS_CUTOFF, SAMPLE_RATE_16K = 0.3, 0.9, 0.75, 48, 16000
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument("--preprocess", action='store_true')
parser.add_argument("--model_name", type=str, required=True)
parser.add_argument("--dataset_path", type=str, default="./dataset")
parser.add_argument("--sample_rate", type=int, required=True)
parser.add_argument("--cpu_cores", type=int, default=2)
parser.add_argument("--cut_preprocess", type=lambda x: bool(strtobool(x)), default=True)
parser.add_argument("--process_effects", type=lambda x: bool(strtobool(x)), default=False)
parser.add_argument("--clean_dataset", type=lambda x: bool(strtobool(x)), default=False)
parser.add_argument("--clean_strength", type=float, default=0.7)
return parser.parse_args()
class PreProcess:
def __init__(self, sr, exp_dir, per):
self.slicer = Slicer(sr=sr, threshold=-42, min_length=1500, min_interval=400, hop_size=15, max_sil_kept=500)
self.sr = sr
self.b_high, self.a_high = signal.butter(N=5, Wn=HIGH_PASS_CUTOFF, btype="high", fs=self.sr)
self.per = per
self.exp_dir = exp_dir
self.device = "cpu"
self.gt_wavs_dir = os.path.join(exp_dir, "sliced_audios")
self.wavs16k_dir = os.path.join(exp_dir, "sliced_audios_16k")
os.makedirs(self.gt_wavs_dir, exist_ok=True)
os.makedirs(self.wavs16k_dir, exist_ok=True)
def _normalize_audio(self, audio):
tmp_max = np.abs(audio).max()
if tmp_max > 2.5: return None
return (audio / tmp_max * (MAX_AMPLITUDE * ALPHA)) + (1 - ALPHA) * audio
def process_audio_segment(self, normalized_audio, sid, idx0, idx1):
if normalized_audio is None:
logger.debug(f"{sid}-{idx0}-{idx1}-filtered")
return
wavfile.write(os.path.join(self.gt_wavs_dir, f"{sid}_{idx0}_{idx1}.wav"), self.sr, normalized_audio.astype(np.float32))
wavfile.write(os.path.join(self.wavs16k_dir, f"{sid}_{idx0}_{idx1}.wav"), SAMPLE_RATE_16K, librosa.resample(normalized_audio, orig_sr=self.sr, target_sr=SAMPLE_RATE_16K, res_type="soxr_vhq").astype(np.float32))
def process_audio(self, path, idx0, sid, cut_preprocess, process_effects, clean_dataset, clean_strength):
try:
audio = load_audio(path, self.sr)
if process_effects:
audio = signal.lfilter(self.b_high, self.a_high, audio)
audio = self._normalize_audio(audio)
if clean_dataset:
from main.tools.noisereduce import reduce_noise
audio = reduce_noise(y=audio, sr=self.sr, prop_decrease=clean_strength, device=config.device)
idx1 = 0
if cut_preprocess:
for audio_segment in self.slicer.slice(audio):
i = 0
while 1:
start = int(self.sr * (self.per - OVERLAP) * i)
i += 1
if len(audio_segment[start:]) > (self.per + OVERLAP) * self.sr:
self.process_audio_segment(audio_segment[start : start + int(self.per * self.sr)], sid, idx0, idx1)
idx1 += 1
else:
self.process_audio_segment(audio_segment[start:], sid, idx0, idx1)
idx1 += 1
break
else: self.process_audio_segment(audio, sid, idx0, idx1)
except Exception as e:
raise RuntimeError(f"{translations['process_audio_error']}: {e}")
def process_file(args):
pp, file, cut_preprocess, process_effects, clean_dataset, clean_strength = (args)
file_path, idx0, sid = file
pp.process_audio(file_path, idx0, sid, cut_preprocess, process_effects, clean_dataset, clean_strength)
def preprocess_training_set(input_root, sr, num_processes, exp_dir, per, cut_preprocess, process_effects, clean_dataset, clean_strength):
start_time = time.time()
pp = PreProcess(sr, exp_dir, per)
logger.info(translations["start_preprocess"].format(num_processes=num_processes))
files = []
idx = 0
for root, _, filenames in os.walk(input_root):
try:
sid = 0 if root == input_root else int(os.path.basename(root))
for f in filenames:
if f.lower().endswith(("wav", "mp3", "flac", "ogg", "opus", "m4a", "mp4", "aac", "alac", "wma", "aiff", "webm", "ac3")):
files.append((os.path.join(root, f), idx, sid))
idx += 1
except ValueError:
raise ValueError(f"{translations['not_integer']} '{os.path.basename(root)}'.")
with tqdm(total=len(files), ncols=100, unit="f") as pbar:
with ProcessPoolExecutor(max_workers=num_processes) as executor:
futures = [executor.submit(process_file, (pp, file, cut_preprocess, process_effects, clean_dataset, clean_strength)) for file in files]
for future in as_completed(futures):
try:
future.result()
except Exception as e:
raise RuntimeError(f"{translations['process_error']}: {e}")
pbar.update(1)
elapsed_time = time.time() - start_time
logger.info(translations["preprocess_success"].format(elapsed_time=f"{elapsed_time:.2f}"))
def main():
args = parse_arguments()
experiment_directory = os.path.join(configs["logs_path"], args.model_name)
num_processes = args.cpu_cores
num_processes = 2 if num_processes is None else int(num_processes)
dataset, sample_rate, cut_preprocess, preprocess_effects, clean_dataset, clean_strength = args.dataset_path, args.sample_rate, args.cut_preprocess, args.process_effects, args.clean_dataset, args.clean_strength
os.makedirs(experiment_directory, exist_ok=True)
log_data = {translations['modelname']: args.model_name, translations['export_process']: experiment_directory, translations['dataset_folder']: dataset, translations['pretrain_sr']: sample_rate, translations['cpu_core']: num_processes, translations['split_audio']: cut_preprocess, translations['preprocess_effect']: preprocess_effects, translations['clear_audio']: clean_dataset}
if clean_dataset: log_data[translations['clean_strength']] = clean_strength
for key, value in log_data.items():
logger.debug(f"{key}: {value}")
pid_path = os.path.join(experiment_directory, "preprocess_pid.txt")
with open(pid_path, "w") as pid_file:
pid_file.write(str(os.getpid()))
try:
preprocess_training_set(dataset, sample_rate, num_processes, experiment_directory, config.per_preprocess, cut_preprocess, preprocess_effects, clean_dataset, clean_strength)
except Exception as e:
logger.error(f"{translations['process_audio_error']} {e}")
import traceback
logger.debug(traceback.format_exc())
if os.path.exists(pid_path): os.remove(pid_path)
logger.info(f"{translations['preprocess_model_success']} {args.model_name}")
if __name__ == "__main__":
mp.set_start_method("spawn", force=True)
main()