|
import os
|
|
import sys
|
|
import torch
|
|
|
|
import numpy as np
|
|
import torch.nn.functional as F
|
|
|
|
from librosa.filters import mel
|
|
|
|
sys.path.append(os.getcwd())
|
|
|
|
from main.library import opencl
|
|
|
|
class STFT:
|
|
def __init__(self, sr=22050, n_mels=80, n_fft=1024, win_size=1024, hop_length=256, fmin=20, fmax=11025, clip_val=1e-5):
|
|
self.target_sr = sr
|
|
self.n_mels = n_mels
|
|
self.n_fft = n_fft
|
|
self.win_size = win_size
|
|
self.hop_length = hop_length
|
|
self.fmin = fmin
|
|
self.fmax = fmax
|
|
self.clip_val = clip_val
|
|
self.mel_basis = {}
|
|
self.hann_window = {}
|
|
|
|
def get_mel(self, y, keyshift=0, speed=1, center=False, train=False):
|
|
n_fft = self.n_fft
|
|
win_size = self.win_size
|
|
hop_length = self.hop_length
|
|
fmax = self.fmax
|
|
factor = 2 ** (keyshift / 12)
|
|
win_size_new = int(np.round(win_size * factor))
|
|
hop_length_new = int(np.round(hop_length * speed))
|
|
mel_basis = self.mel_basis if not train else {}
|
|
hann_window = self.hann_window if not train else {}
|
|
mel_basis_key = str(fmax) + "_" + str(y.device)
|
|
|
|
if mel_basis_key not in mel_basis: mel_basis[mel_basis_key] = torch.from_numpy(mel(sr=self.target_sr, n_fft=n_fft, n_mels=self.n_mels, fmin=self.fmin, fmax=fmax)).float().to(y.device)
|
|
keyshift_key = str(keyshift) + "_" + str(y.device)
|
|
if keyshift_key not in hann_window: hann_window[keyshift_key] = torch.hann_window(win_size_new).to(y.device)
|
|
|
|
pad_left = (win_size_new - hop_length_new) // 2
|
|
pad_right = max((win_size_new - hop_length_new + 1) // 2, win_size_new - y.size(-1) - pad_left)
|
|
|
|
pad = F.pad(y.unsqueeze(1), (pad_left, pad_right), mode="reflect" if pad_right < y.size(-1) else "constant").squeeze(1)
|
|
n_fft = int(np.round(n_fft * factor))
|
|
|
|
if str(y.device).startswith("ocl"):
|
|
stft = opencl.STFT(filter_length=n_fft, hop_length=hop_length_new, win_length=win_size_new).to(y.device)
|
|
spec = stft.transform(pad, 1e-9)
|
|
else:
|
|
spec = torch.stft(pad, n_fft, hop_length=hop_length_new, win_length=win_size_new, window=hann_window[keyshift_key], center=center, pad_mode="reflect", normalized=False, onesided=True, return_complex=True)
|
|
spec = torch.sqrt(spec.real.pow(2) + spec.imag.pow(2) + 1e-9)
|
|
|
|
if keyshift != 0:
|
|
size = n_fft // 2 + 1
|
|
resize = spec.size(1)
|
|
spec = (F.pad(spec, (0, 0, 0, size - resize)) if resize < size else spec[:, :size, :]) * win_size / win_size_new
|
|
|
|
return torch.log(torch.clamp(torch.matmul(mel_basis[mel_basis_key], spec), min=self.clip_val) * 1) |