|
import math
|
|
import torch
|
|
|
|
import torch.nn.functional as F
|
|
|
|
from torch import nn, einsum
|
|
from functools import partial
|
|
from einops import rearrange, repeat, pack, unpack
|
|
|
|
def exists(val):
|
|
return val is not None
|
|
|
|
def default(value, d):
|
|
return value if exists(value) else d
|
|
|
|
def empty(tensor):
|
|
return tensor.numel() == 0
|
|
|
|
def pad_to_multiple(tensor, multiple, dim=-1, value=0):
|
|
seqlen = tensor.shape[dim]
|
|
m = seqlen / multiple
|
|
if m.is_integer(): return False, tensor
|
|
return True, F.pad(tensor, (*((0,) * (-1 - dim) * 2), 0, (math.ceil(m) * multiple - seqlen)), value = value)
|
|
|
|
def look_around(x, backward = 1, forward = 0, pad_value = -1, dim = 2):
|
|
t = x.shape[1]
|
|
dims = (len(x.shape) - dim) * (0, 0)
|
|
padded_x = F.pad(x, (*dims, backward, forward), value = pad_value)
|
|
return torch.cat([padded_x[:, ind:(ind + t), ...] for ind in range(forward + backward + 1)], dim = dim)
|
|
|
|
def rotate_half(x):
|
|
x1, x2 = rearrange(x, 'b ... (r d) -> b ... r d', r = 2).unbind(dim = -2)
|
|
return torch.cat((-x2, x1), dim = -1)
|
|
|
|
def apply_rotary_pos_emb(q, k, freqs, scale = 1):
|
|
q_len = q.shape[-2]
|
|
q_freqs = freqs[..., -q_len:, :]
|
|
inv_scale = scale ** -1
|
|
if scale.ndim == 2: scale = scale[-q_len:, :]
|
|
q = (q * q_freqs.cos() * scale) + (rotate_half(q) * q_freqs.sin() * scale)
|
|
k = (k * freqs.cos() * inv_scale) + (rotate_half(k) * freqs.sin() * inv_scale)
|
|
|
|
return q, k
|
|
|
|
def orthogonal_matrix_chunk(cols, qr_uniform_q=False, device=None):
|
|
unstructured_block = torch.randn((cols, cols), device=device)
|
|
q, r = torch.linalg.qr(unstructured_block.cpu(), mode="reduced")
|
|
q, r = map(lambda t: t.to(device), (q, r))
|
|
if qr_uniform_q:
|
|
d = torch.diag(r, 0)
|
|
q *= d.sign()
|
|
|
|
return q.t()
|
|
|
|
def gaussian_orthogonal_random_matrix(nb_rows, nb_columns, scaling=0, qr_uniform_q=False, device=None):
|
|
nb_full_blocks = int(nb_rows / nb_columns)
|
|
block_list = []
|
|
for _ in range(nb_full_blocks):
|
|
block_list.append(orthogonal_matrix_chunk(nb_columns, qr_uniform_q=qr_uniform_q, device=device))
|
|
|
|
remaining_rows = nb_rows - nb_full_blocks * nb_columns
|
|
if remaining_rows > 0: block_list.append(orthogonal_matrix_chunk(nb_columns, qr_uniform_q=qr_uniform_q, device=device)[:remaining_rows])
|
|
if scaling == 0: multiplier = torch.randn((nb_rows, nb_columns), device=device).norm(dim=1)
|
|
elif scaling == 1: multiplier = math.sqrt((float(nb_columns))) * torch.ones((nb_rows,), device=device)
|
|
else: raise ValueError(f"{scaling} != 0, 1")
|
|
|
|
return torch.diag(multiplier) @ torch.cat(block_list)
|
|
|
|
def linear_attention(q, k, v):
|
|
return einsum("...ed,...nd->...ne", k, q) if v is None else einsum("...de,...nd,...n->...ne", einsum("...nd,...ne->...de", k, v), q, 1.0 / (einsum("...nd,...d->...n", q, k.sum(dim=-2).type_as(q)) + 1e-8))
|
|
|
|
def softmax_kernel(data, *, projection_matrix, is_query, normalize_data=True, eps=1e-4, device=None):
|
|
b, h, *_ = data.shape
|
|
|
|
data_normalizer = (data.shape[-1] ** -0.25) if normalize_data else 1.0
|
|
ratio = projection_matrix.shape[0] ** -0.5
|
|
data_dash = torch.einsum("...id,...jd->...ij", (data_normalizer * data), repeat(projection_matrix, "j d -> b h j d", b=b, h=h).type_as(data))
|
|
diag_data = ((torch.sum(data**2, dim=-1) / 2.0) * (data_normalizer**2)).unsqueeze(dim=-1)
|
|
|
|
return (ratio * (torch.exp(data_dash - diag_data - torch.max(data_dash, dim=-1, keepdim=True).values) + eps) if is_query else ratio * (torch.exp(data_dash - diag_data + eps))).type_as(data)
|
|
|
|
class SinusoidalEmbeddings(nn.Module):
|
|
def __init__(self, dim, scale_base = None, use_xpos = False, theta = 10000):
|
|
super().__init__()
|
|
inv_freq = 1. / (theta ** (torch.arange(0, dim, 2).float() / dim))
|
|
self.register_buffer('inv_freq', inv_freq)
|
|
self.use_xpos = use_xpos
|
|
self.scale_base = scale_base
|
|
assert not (use_xpos and not exists(scale_base))
|
|
scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim)
|
|
self.register_buffer('scale', scale, persistent = False)
|
|
|
|
def forward(self, x):
|
|
seq_len, device = x.shape[-2], x.device
|
|
t = torch.arange(seq_len, device = x.device).type_as(self.inv_freq)
|
|
|
|
freqs = torch.einsum('i , j -> i j', t, self.inv_freq)
|
|
freqs = torch.cat((freqs, freqs), dim = -1)
|
|
|
|
if not self.use_xpos: return freqs, torch.ones(1, device = device)
|
|
|
|
power = (t - (seq_len // 2)) / self.scale_base
|
|
scale = self.scale ** rearrange(power, 'n -> n 1')
|
|
|
|
return freqs, torch.cat((scale, scale), dim = -1)
|
|
|
|
class LocalAttention(nn.Module):
|
|
def __init__(self, window_size, causal = False, look_backward = 1, look_forward = None, dropout = 0., shared_qk = False, rel_pos_emb_config = None, dim = None, autopad = False, exact_windowsize = False, scale = None, use_rotary_pos_emb = True, use_xpos = False, xpos_scale_base = None):
|
|
super().__init__()
|
|
look_forward = default(look_forward, 0 if causal else 1)
|
|
assert not (causal and look_forward > 0)
|
|
self.scale = scale
|
|
self.window_size = window_size
|
|
self.autopad = autopad
|
|
self.exact_windowsize = exact_windowsize
|
|
self.causal = causal
|
|
self.look_backward = look_backward
|
|
self.look_forward = look_forward
|
|
self.dropout = nn.Dropout(dropout)
|
|
self.shared_qk = shared_qk
|
|
self.rel_pos = None
|
|
self.use_xpos = use_xpos
|
|
if use_rotary_pos_emb and (exists(rel_pos_emb_config) or exists(dim)):
|
|
if exists(rel_pos_emb_config): dim = rel_pos_emb_config[0]
|
|
self.rel_pos = SinusoidalEmbeddings(dim, use_xpos = use_xpos, scale_base = default(xpos_scale_base, window_size // 2))
|
|
|
|
def forward(self, q, k, v, mask = None, input_mask = None, attn_bias = None, window_size = None):
|
|
mask = default(mask, input_mask)
|
|
assert not (exists(window_size) and not self.use_xpos)
|
|
|
|
_, autopad, pad_value, window_size, causal, look_backward, look_forward, shared_qk = q.shape, self.autopad, -1, default(window_size, self.window_size), self.causal, self.look_backward, self.look_forward, self.shared_qk
|
|
(q, packed_shape), (k, _), (v, _) = map(lambda t: pack([t], '* n d'), (q, k, v))
|
|
|
|
if autopad:
|
|
orig_seq_len = q.shape[1]
|
|
(_, q), (_, k), (_, v) = map(lambda t: pad_to_multiple(t, self.window_size, dim = -2), (q, k, v))
|
|
|
|
b, n, dim_head, device, dtype = *q.shape, q.device, q.dtype
|
|
scale = default(self.scale, dim_head ** -0.5)
|
|
|
|
assert (n % window_size) == 0
|
|
windows = n // window_size
|
|
|
|
if shared_qk: k = F.normalize(k, dim = -1).type(k.dtype)
|
|
|
|
seq = torch.arange(n, device = device)
|
|
b_t = rearrange(seq, '(w n) -> 1 w n', w = windows, n = window_size)
|
|
bq, bk, bv = map(lambda t: rearrange(t, 'b (w n) d -> b w n d', w = windows), (q, k, v))
|
|
|
|
bq = bq * scale
|
|
look_around_kwargs = dict(backward = look_backward, forward = look_forward, pad_value = pad_value)
|
|
|
|
bk = look_around(bk, **look_around_kwargs)
|
|
bv = look_around(bv, **look_around_kwargs)
|
|
|
|
if exists(self.rel_pos):
|
|
pos_emb, xpos_scale = self.rel_pos(bk)
|
|
bq, bk = apply_rotary_pos_emb(bq, bk, pos_emb, scale = xpos_scale)
|
|
|
|
bq_t = b_t
|
|
bq_k = look_around(b_t, **look_around_kwargs)
|
|
bq_t = rearrange(bq_t, '... i -> ... i 1')
|
|
bq_k = rearrange(bq_k, '... j -> ... 1 j')
|
|
|
|
pad_mask = bq_k == pad_value
|
|
sim = einsum('b h i e, b h j e -> b h i j', bq, bk)
|
|
|
|
if exists(attn_bias):
|
|
heads = attn_bias.shape[0]
|
|
assert (b % heads) == 0
|
|
|
|
attn_bias = repeat(attn_bias, 'h i j -> (b h) 1 i j', b = b // heads)
|
|
sim = sim + attn_bias
|
|
|
|
mask_value = -torch.finfo(sim.dtype).max
|
|
if shared_qk:
|
|
self_mask = bq_t == bq_k
|
|
sim = sim.masked_fill(self_mask, -5e4)
|
|
del self_mask
|
|
|
|
if causal:
|
|
causal_mask = bq_t < bq_k
|
|
if self.exact_windowsize: causal_mask = causal_mask | (bq_t > (bq_k + (self.window_size * self.look_backward)))
|
|
sim = sim.masked_fill(causal_mask, mask_value)
|
|
del causal_mask
|
|
|
|
sim = sim.masked_fill(((bq_k - (self.window_size * self.look_forward)) > bq_t) | (bq_t > (bq_k + (self.window_size * self.look_backward))) | pad_mask, mask_value) if not causal and self.exact_windowsize else sim.masked_fill(pad_mask, mask_value)
|
|
|
|
if exists(mask):
|
|
batch = mask.shape[0]
|
|
assert (b % batch) == 0
|
|
|
|
h = b // mask.shape[0]
|
|
if autopad: _, mask = pad_to_multiple(mask, window_size, dim = -1, value = False)
|
|
|
|
mask = repeat(rearrange(look_around(rearrange(mask, '... (w n) -> (...) w n', w = windows, n = window_size), **{**look_around_kwargs, 'pad_value': False}), '... j -> ... 1 j'), 'b ... -> (b h) ...', h = h)
|
|
sim = sim.masked_fill(~mask, mask_value)
|
|
|
|
del mask
|
|
|
|
out = rearrange(einsum('b h i j, b h j e -> b h i e', self.dropout(sim.softmax(dim = -1)), bv), 'b w n d -> b (w n) d')
|
|
if autopad: out = out[:, :orig_seq_len, :]
|
|
|
|
out, *_ = unpack(out, packed_shape, '* n d')
|
|
return out
|
|
|
|
class FastAttention(nn.Module):
|
|
def __init__(self, dim_heads, nb_features=None, ortho_scaling=0, causal=False, generalized_attention=False, kernel_fn=nn.ReLU(), qr_uniform_q=False, no_projection=False):
|
|
super().__init__()
|
|
nb_features = default(nb_features, int(dim_heads * math.log(dim_heads)))
|
|
self.dim_heads = dim_heads
|
|
self.nb_features = nb_features
|
|
self.ortho_scaling = ortho_scaling
|
|
self.create_projection = partial(gaussian_orthogonal_random_matrix, nb_rows=self.nb_features, nb_columns=dim_heads, scaling=ortho_scaling, qr_uniform_q=qr_uniform_q)
|
|
projection_matrix = self.create_projection()
|
|
self.register_buffer("projection_matrix", projection_matrix)
|
|
self.generalized_attention = generalized_attention
|
|
self.kernel_fn = kernel_fn
|
|
self.no_projection = no_projection
|
|
self.causal = causal
|
|
|
|
@torch.no_grad()
|
|
def redraw_projection_matrix(self):
|
|
projections = self.create_projection()
|
|
self.projection_matrix.copy_(projections)
|
|
del projections
|
|
|
|
def forward(self, q, k, v):
|
|
if self.no_projection: q, k = q.softmax(dim=-1), (torch.exp(k) if self.causal else k.softmax(dim=-2))
|
|
else:
|
|
create_kernel = partial(softmax_kernel, projection_matrix=self.projection_matrix, device=q.device)
|
|
q, k = create_kernel(q, is_query=True), create_kernel(k, is_query=False)
|
|
|
|
attn_fn = linear_attention if not self.causal else self.causal_linear_fn
|
|
return attn_fn(q, k, None) if v is None else attn_fn(q, k, v)
|
|
|
|
class SelfAttention(nn.Module):
|
|
def __init__(self, dim, causal=False, heads=8, dim_head=64, local_heads=0, local_window_size=256, nb_features=None, feature_redraw_interval=1000, generalized_attention=False, kernel_fn=nn.ReLU(), qr_uniform_q=False, dropout=0.0, no_projection=False):
|
|
super().__init__()
|
|
assert dim % heads == 0
|
|
dim_head = default(dim_head, dim // heads)
|
|
inner_dim = dim_head * heads
|
|
self.fast_attention = FastAttention(dim_head, nb_features, causal=causal, generalized_attention=generalized_attention, kernel_fn=kernel_fn, qr_uniform_q=qr_uniform_q, no_projection=no_projection)
|
|
self.heads = heads
|
|
self.global_heads = heads - local_heads
|
|
self.local_attn = (LocalAttention(window_size=local_window_size, causal=causal, autopad=True, dropout=dropout, look_forward=int(not causal), rel_pos_emb_config=(dim_head, local_heads)) if local_heads > 0 else None)
|
|
self.to_q = nn.Linear(dim, inner_dim)
|
|
self.to_k = nn.Linear(dim, inner_dim)
|
|
self.to_v = nn.Linear(dim, inner_dim)
|
|
self.to_out = nn.Linear(inner_dim, dim)
|
|
self.dropout = nn.Dropout(dropout)
|
|
|
|
@torch.no_grad()
|
|
def redraw_projection_matrix(self):
|
|
self.fast_attention.redraw_projection_matrix()
|
|
|
|
def forward(self, x, context=None, mask=None, context_mask=None, name=None, inference=False, **kwargs):
|
|
_, _, _, h, gh = *x.shape, self.heads, self.global_heads
|
|
cross_attend = exists(context)
|
|
context = default(context, x)
|
|
context_mask = default(context_mask, mask) if not cross_attend else context_mask
|
|
|
|
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), (self.to_q(x), self.to_k(context), self.to_v(context)))
|
|
(q, lq), (k, lk), (v, lv) = map(lambda t: (t[:, :gh], t[:, gh:]), (q, k, v))
|
|
|
|
attn_outs = []
|
|
|
|
if not empty(q):
|
|
if exists(context_mask): v.masked_fill_(~context_mask[:, None, :, None], 0.0)
|
|
if cross_attend: pass
|
|
else: out = self.fast_attention(q, k, v)
|
|
|
|
attn_outs.append(out)
|
|
|
|
if not empty(lq):
|
|
assert (not cross_attend), "not cross_attend"
|
|
|
|
out = self.local_attn(lq, lk, lv, input_mask=mask)
|
|
attn_outs.append(out)
|
|
|
|
return self.dropout(self.to_out(rearrange(torch.cat(attn_outs, dim=1), "b h n d -> b n (h d)"))) |