|
import os
|
|
import io
|
|
import sys
|
|
import onnx
|
|
import json
|
|
import torch
|
|
import onnxsim
|
|
import warnings
|
|
|
|
sys.path.append(os.getcwd())
|
|
|
|
from main.library.algorithm.synthesizers import SynthesizerONNX
|
|
|
|
warnings.filterwarnings("ignore")
|
|
|
|
def onnx_exporter(input_path, output_path, is_half=False, device="cpu"):
|
|
cpt = (torch.load(input_path, map_location="cpu", weights_only=True) if os.path.isfile(input_path) else None)
|
|
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]
|
|
|
|
model_name, model_author, epochs, steps, version, f0, model_hash, vocoder, creation_date, energy_use = cpt.get("model_name", None), cpt.get("author", None), cpt.get("epoch", None), cpt.get("step", None), cpt.get("version", "v1"), cpt.get("f0", 1), cpt.get("model_hash", None), cpt.get("vocoder", "Default"), cpt.get("creation_date", None), cpt.get("energy", False)
|
|
text_enc_hidden_dim = 768 if version == "v2" else 256
|
|
tgt_sr = cpt["config"][-1]
|
|
|
|
net_g = SynthesizerONNX(*cpt["config"], use_f0=f0, text_enc_hidden_dim=text_enc_hidden_dim, vocoder=vocoder, checkpointing=False, energy=energy_use)
|
|
net_g.load_state_dict(cpt["weight"], strict=False)
|
|
net_g.eval().to(device)
|
|
net_g = (net_g.half() if is_half else net_g.float())
|
|
|
|
phone = torch.rand(1, 200, text_enc_hidden_dim).to(device)
|
|
phone_length = torch.tensor([200]).long().to(device)
|
|
ds = torch.LongTensor([0]).to(device)
|
|
rnd = torch.rand(1, 192, 200).to(device)
|
|
|
|
if f0:
|
|
pitch = torch.randint(size=(1, 200), low=5, high=255).to(device)
|
|
pitchf = torch.rand(1, 200).to(device)
|
|
|
|
if energy_use:
|
|
energy = torch.rand(1, 200).to(device)
|
|
|
|
args = [phone, phone_length, ds, rnd]
|
|
input_names = ["phone", "phone_lengths", "ds", "rnd"]
|
|
dynamic_axes = {"phone": [1], "rnd": [2]}
|
|
|
|
if f0:
|
|
args += [pitch, pitchf]
|
|
input_names += ["pitch", "pitchf"]
|
|
dynamic_axes.update({"pitch": [1], "pitchf": [1]})
|
|
|
|
if energy_use:
|
|
args.append(energy)
|
|
input_names.append("energy")
|
|
dynamic_axes.update({"energy": [1]})
|
|
|
|
try:
|
|
with io.BytesIO() as model:
|
|
torch.onnx.export(
|
|
net_g,
|
|
tuple(args),
|
|
model,
|
|
do_constant_folding=True,
|
|
opset_version=17,
|
|
verbose=False,
|
|
input_names=input_names,
|
|
output_names=["audio"],
|
|
dynamic_axes=dynamic_axes
|
|
)
|
|
|
|
model, _ = onnxsim.simplify(onnx.load_model_from_string(model.getvalue()))
|
|
model.metadata_props.append(
|
|
onnx.StringStringEntryProto(
|
|
key="model_info",
|
|
value=json.dumps(
|
|
{
|
|
"model_name": model_name,
|
|
"author": model_author,
|
|
"epoch": epochs,
|
|
"step": steps,
|
|
"version": version,
|
|
"sr": tgt_sr,
|
|
"f0": f0,
|
|
"model_hash": model_hash,
|
|
"creation_date": creation_date,
|
|
"vocoder": vocoder,
|
|
"text_enc_hidden_dim": text_enc_hidden_dim,
|
|
"energy": energy_use
|
|
}
|
|
)
|
|
)
|
|
)
|
|
|
|
if is_half:
|
|
try:
|
|
import onnxconverter_common
|
|
except:
|
|
os.system(f"{sys.executable} -m pip install onnxconverter_common")
|
|
import onnxconverter_common
|
|
|
|
model = onnxconverter_common.convert_float_to_float16(model, keep_io_types=True)
|
|
|
|
onnx.save(model, output_path)
|
|
return output_path
|
|
except:
|
|
import traceback
|
|
print(traceback.print_exc())
|
|
return None |