|
import numpy as np
|
|
|
|
class Slicer:
|
|
def __init__(self, sr, threshold = -40.0, min_length = 5000, min_interval = 300, hop_size = 20, max_sil_kept = 5000):
|
|
min_interval = sr * min_interval / 1000
|
|
self.threshold = 10 ** (threshold / 20.0)
|
|
self.hop_size = round(sr * hop_size / 1000)
|
|
self.win_size = min(round(min_interval), 4 * self.hop_size)
|
|
self.min_length = round(sr * min_length / 1000 / self.hop_size)
|
|
self.min_interval = round(min_interval / self.hop_size)
|
|
self.max_sil_kept = round(sr * max_sil_kept / 1000 / self.hop_size)
|
|
|
|
def _apply_slice(self, waveform, begin, end):
|
|
start_idx = begin * self.hop_size
|
|
|
|
return waveform[:, start_idx:min(waveform.shape[1], end * self.hop_size)] if len(waveform.shape) > 1 else waveform[start_idx:min(waveform.shape[0], end * self.hop_size)]
|
|
|
|
def slice(self, waveform):
|
|
samples = waveform.mean(axis=0) if len(waveform.shape) > 1 else waveform
|
|
if samples.shape[0] <= self.min_length: return [waveform]
|
|
rms_list = get_rms(y=samples, frame_length=self.win_size, hop_length=self.hop_size).squeeze(0)
|
|
sil_tags = []
|
|
silence_start, clip_start = None, 0
|
|
|
|
for i, rms in enumerate(rms_list):
|
|
if rms < self.threshold:
|
|
if silence_start is None: silence_start = i
|
|
continue
|
|
|
|
if silence_start is None: continue
|
|
is_leading_silence = silence_start == 0 and i > self.max_sil_kept
|
|
need_slice_middle = (i - silence_start >= self.min_interval and i - clip_start >= self.min_length)
|
|
if not is_leading_silence and not need_slice_middle:
|
|
silence_start = None
|
|
continue
|
|
|
|
if i - silence_start <= self.max_sil_kept:
|
|
pos = rms_list[silence_start : i + 1].argmin() + silence_start
|
|
sil_tags.append((0, pos) if silence_start == 0 else (pos, pos))
|
|
clip_start = pos
|
|
elif i - silence_start <= self.max_sil_kept * 2:
|
|
pos = rms_list[i - self.max_sil_kept : silence_start + self.max_sil_kept + 1].argmin()
|
|
pos += i - self.max_sil_kept
|
|
pos_r = (rms_list[i - self.max_sil_kept : i + 1].argmin() + i - self.max_sil_kept)
|
|
if silence_start == 0:
|
|
sil_tags.append((0, pos_r))
|
|
clip_start = pos_r
|
|
else:
|
|
sil_tags.append((min((rms_list[silence_start : silence_start + self.max_sil_kept + 1].argmin() + silence_start), pos), max(pos_r, pos)))
|
|
clip_start = max(pos_r, pos)
|
|
else:
|
|
pos_r = (rms_list[i - self.max_sil_kept : i + 1].argmin() + i - self.max_sil_kept)
|
|
sil_tags.append((0, pos_r) if silence_start == 0 else ((rms_list[silence_start : silence_start + self.max_sil_kept + 1].argmin() + silence_start), pos_r))
|
|
clip_start = pos_r
|
|
|
|
silence_start = None
|
|
|
|
total_frames = rms_list.shape[0]
|
|
if (silence_start is not None and total_frames - silence_start >= self.min_interval): sil_tags.append((rms_list[silence_start : min(total_frames, silence_start + self.max_sil_kept) + 1].argmin() + silence_start, total_frames + 1))
|
|
|
|
if not sil_tags: return [waveform]
|
|
else:
|
|
chunks = []
|
|
if sil_tags[0][0] > 0: chunks.append(self._apply_slice(waveform, 0, sil_tags[0][0]))
|
|
|
|
for i in range(len(sil_tags) - 1):
|
|
chunks.append(self._apply_slice(waveform, sil_tags[i][1], sil_tags[i + 1][0]))
|
|
|
|
if sil_tags[-1][1] < total_frames: chunks.append(self._apply_slice(waveform, sil_tags[-1][1], total_frames))
|
|
return chunks
|
|
|
|
class Slicer2(Slicer):
|
|
def slice2(self, waveform):
|
|
samples = waveform.mean(axis=0) if len(waveform.shape) > 1 else waveform
|
|
|
|
if samples.shape[0] <= self.min_length: return [(waveform, 0, samples.shape[0])]
|
|
rms_list = get_rms(y=samples, frame_length=self.win_size, hop_length=self.hop_size).squeeze(0)
|
|
|
|
sil_tags = []
|
|
silence_start, clip_start = None, 0
|
|
|
|
for i, rms in enumerate(rms_list):
|
|
if rms < self.threshold:
|
|
if silence_start is None: silence_start = i
|
|
continue
|
|
|
|
if silence_start is None: continue
|
|
|
|
is_leading_silence = silence_start == 0 and i > self.max_sil_kept
|
|
need_slice_middle = (i - silence_start >= self.min_interval and i - clip_start >= self.min_length)
|
|
|
|
if not is_leading_silence and not need_slice_middle:
|
|
silence_start = None
|
|
continue
|
|
|
|
if i - silence_start <= self.max_sil_kept:
|
|
pos = rms_list[silence_start : i + 1].argmin() + silence_start
|
|
sil_tags.append((0, pos) if silence_start == 0 else (pos, pos))
|
|
clip_start = pos
|
|
elif i - silence_start <= self.max_sil_kept * 2:
|
|
pos = rms_list[i - self.max_sil_kept : silence_start + self.max_sil_kept + 1].argmin()
|
|
pos += i - self.max_sil_kept
|
|
|
|
pos_r = (rms_list[i - self.max_sil_kept : i + 1].argmin() + i - self.max_sil_kept)
|
|
|
|
if silence_start == 0:
|
|
sil_tags.append((0, pos_r))
|
|
clip_start = pos_r
|
|
else:
|
|
sil_tags.append((min((rms_list[silence_start : silence_start + self.max_sil_kept + 1].argmin() + silence_start), pos), max(pos_r, pos)))
|
|
clip_start = max(pos_r, pos)
|
|
else:
|
|
pos_r = (rms_list[i - self.max_sil_kept : i + 1].argmin() + i - self.max_sil_kept)
|
|
sil_tags.append((0, pos_r) if silence_start == 0 else ((rms_list[silence_start : silence_start + self.max_sil_kept + 1].argmin() + silence_start), pos_r))
|
|
clip_start = pos_r
|
|
|
|
silence_start = None
|
|
|
|
total_frames = rms_list.shape[0]
|
|
if (silence_start is not None and total_frames - silence_start >= self.min_interval): sil_tags.append((rms_list[silence_start : min(total_frames, silence_start + self.max_sil_kept) + 1].argmin() + silence_start, total_frames + 1))
|
|
|
|
if not sil_tags: return [(waveform, 0, samples.shape[-1])]
|
|
else:
|
|
chunks = []
|
|
if sil_tags[0][0] > 0: chunks.append((self._apply_slice(waveform, 0, sil_tags[0][0]), 0, sil_tags[0][0] * self.hop_size))
|
|
|
|
for i in range(len(sil_tags) - 1):
|
|
chunks.append((self._apply_slice(waveform, sil_tags[i][1], sil_tags[i + 1][0]), sil_tags[i][1] * self.hop_size, sil_tags[i + 1][0] * self.hop_size))
|
|
|
|
if sil_tags[-1][1] < total_frames: chunks.append((self._apply_slice(waveform, sil_tags[-1][1], total_frames), sil_tags[-1][1] * self.hop_size, samples.shape[-1]))
|
|
return chunks
|
|
|
|
def get_rms(y, frame_length=2048, hop_length=512, pad_mode="constant"):
|
|
y = np.pad(y, (int(frame_length // 2), int(frame_length // 2)), mode=pad_mode)
|
|
axis = -1
|
|
|
|
x_shape_trimmed = list(y.shape)
|
|
x_shape_trimmed[axis] -= frame_length - 1
|
|
xw = np.moveaxis(np.lib.stride_tricks.as_strided(y, shape=tuple(x_shape_trimmed) + tuple([frame_length]), strides=y.strides + tuple([y.strides[axis]])), -1, axis - 1 if axis < 0 else axis + 1)
|
|
|
|
slices = [slice(None)] * xw.ndim
|
|
slices[axis] = slice(0, None, hop_length)
|
|
|
|
return np.sqrt(np.mean(np.abs(xw[tuple(slices)]) ** 2, axis=-2, keepdims=True)) |