RVC-GUI / main /inference /create_dataset.py
AnhP's picture
Upload 170 files
1e4a2ab verified
raw
history blame
11.2 kB
import os
import sys
import time
import yt_dlp
import shutil
import librosa
import argparse
import warnings
from soundfile import read, write
from distutils.util import strtobool
sys.path.append(os.getcwd())
from main.app.variables import config, logger, translations
from main.library.uvr5_lib.separator import Separator
dataset_temp = "dataset_temp"
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument("--create_dataset", action='store_true')
parser.add_argument("--input_audio", type=str, required=True)
parser.add_argument("--output_dataset", type=str, default="./dataset")
parser.add_argument("--sample_rate", type=int, default=44100)
parser.add_argument("--clean_dataset", type=lambda x: bool(strtobool(x)), default=False)
parser.add_argument("--clean_strength", type=float, default=0.7)
parser.add_argument("--separator_reverb", type=lambda x: bool(strtobool(x)), default=False)
parser.add_argument("--kim_vocal_version", type=int, default=2)
parser.add_argument("--overlap", type=float, default=0.25)
parser.add_argument("--segments_size", type=int, default=256)
parser.add_argument("--mdx_hop_length", type=int, default=1024)
parser.add_argument("--mdx_batch_size", type=int, default=1)
parser.add_argument("--denoise_mdx", type=lambda x: bool(strtobool(x)), default=False)
parser.add_argument("--skip", type=lambda x: bool(strtobool(x)), default=False)
parser.add_argument("--skip_start_audios", type=str, default="0")
parser.add_argument("--skip_end_audios", type=str, default="0")
return parser.parse_args()
def main():
pid_path = os.path.join("assets", "create_dataset_pid.txt")
with open(pid_path, "w") as pid_file:
pid_file.write(str(os.getpid()))
args = parse_arguments()
input_audio, output_dataset, sample_rate, clean_dataset, clean_strength, separator_reverb, kim_vocal_version, overlap, segments_size, hop_length, batch_size, denoise_mdx, skip, skip_start_audios, skip_end_audios = args.input_audio, args.output_dataset, args.sample_rate, args.clean_dataset, args.clean_strength, args.separator_reverb, args.kim_vocal_version, args.overlap, args.segments_size, args.mdx_hop_length, args.mdx_batch_size, args.denoise_mdx, args.skip, args.skip_start_audios, args.skip_end_audios
log_data = {translations['audio_path']: input_audio, translations['output_path']: output_dataset, translations['sr']: sample_rate, translations['clear_dataset']: clean_dataset, translations['dereveb_audio']: separator_reverb, translations['segments_size']: segments_size, translations['overlap']: overlap, "Hop length": hop_length, translations['batch_size']: batch_size, translations['denoise_mdx']: denoise_mdx, translations['skip']: skip}
if clean_dataset: log_data[translations['clean_strength']] = clean_strength
if skip:
log_data[translations['skip_start']] = skip_start_audios
log_data[translations['skip_end']] = skip_end_audios
for key, value in log_data.items():
logger.debug(f"{key}: {value}")
if kim_vocal_version not in [1, 2]: raise ValueError(translations["version_not_valid"])
start_time = time.time()
try:
paths = []
if not os.path.exists(dataset_temp): os.makedirs(dataset_temp, exist_ok=True)
urls = input_audio.replace(", ", ",").split(",")
for url in urls:
path = downloader(url, urls.index(url))
paths.append(path)
if skip:
skip_start_audios, skip_end_audios = skip_start_audios.replace(", ", ",").split(","), skip_end_audios.replace(", ", ",").split(",")
if len(skip_start_audios) < len(paths) or len(skip_end_audios) < len(paths):
logger.warning(translations["skip<audio"])
sys.exit(1)
elif len(skip_start_audios) > len(paths) or len(skip_end_audios) > len(paths):
logger.warning(translations["skip>audio"])
sys.exit(1)
else:
for audio, skip_start_audio, skip_end_audio in zip(paths, skip_start_audios, skip_end_audios):
skip_start(audio, skip_start_audio)
skip_end(audio, skip_end_audio)
separator_paths = []
for audio in paths:
vocals = separator_music_main(audio, dataset_temp, segments_size, overlap, denoise_mdx, kim_vocal_version, hop_length, batch_size, sample_rate)
if separator_reverb: vocals = separator_reverb_audio(vocals, dataset_temp, segments_size, overlap, denoise_mdx, hop_length, batch_size, sample_rate)
separator_paths.append(vocals)
paths = separator_paths
for audio_path in paths:
data, sample_rate = read(audio_path)
data = librosa.to_mono(data.T)
if clean_dataset:
from main.tools.noisereduce import reduce_noise
data = reduce_noise(y=data, sr=sample_rate, prop_decrease=clean_strength, device=config.device)
write(audio_path, data, sample_rate)
except Exception as e:
logger.error(f"{translations['create_dataset_error']}: {e}")
import traceback
logger.error(traceback.format_exc())
finally:
for audio in paths:
shutil.move(audio, output_dataset)
if os.path.exists(dataset_temp): shutil.rmtree(dataset_temp, ignore_errors=True)
elapsed_time = time.time() - start_time
if os.path.exists(pid_path): os.remove(pid_path)
logger.info(translations["create_dataset_success"].format(elapsed_time=f"{elapsed_time:.2f}"))
def downloader(url, name):
with warnings.catch_warnings():
warnings.simplefilter("ignore")
ydl_opts = {"format": "bestaudio/best", "outtmpl": os.path.join(dataset_temp, f"{name}"), "postprocessors": [{"key": "FFmpegExtractAudio", "preferredcodec": "wav", "preferredquality": "192"}], "no_warnings": True, "noplaylist": True, "noplaylist": True, "verbose": False}
logger.info(f"{translations['starting_download']}: {url}...")
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
ydl.extract_info(url)
logger.info(f"{translations['download_success']}: {url}")
return os.path.join(dataset_temp, f"{name}" + ".wav")
def skip_start(input_file, seconds):
data, sr = read(input_file)
total_duration = len(data) / sr
if seconds <= 0: logger.warning(translations["=<0"])
elif seconds >= total_duration: logger.warning(translations["skip_warning"].format(seconds=seconds, total_duration=f"{total_duration:.2f}"))
else:
logger.info(f"{translations['skip_start']}: {input_file}...")
write(input_file, data[int(seconds * sr):], sr)
logger.info(translations["skip_start_audio"].format(input_file=input_file))
def skip_end(input_file, seconds):
data, sr = read(input_file)
total_duration = len(data) / sr
if seconds <= 0: logger.warning(translations["=<0"])
elif seconds > total_duration: logger.warning(translations["skip_warning"].format(seconds=seconds, total_duration=f"{total_duration:.2f}"))
else:
logger.info(f"{translations['skip_end']}: {input_file}...")
write(input_file, data[:-int(seconds * sr)], sr)
logger.info(translations["skip_end_audio"].format(input_file=input_file))
def separator_music_main(input, output, segments_size, overlap, denoise, version, hop_length, batch_size, sample_rate):
if not os.path.exists(input):
logger.warning(translations["input_not_valid"])
return None
if not os.path.exists(output):
logger.warning(translations["output_not_valid"])
return None
model = f"Kim_Vocal_{version}.onnx"
output_separator = separator_main(audio_file=input, model_filename=model, output_format="wav", output_dir=output, mdx_segment_size=segments_size, mdx_overlap=overlap, mdx_batch_size=batch_size, mdx_hop_length=hop_length, mdx_enable_denoise=denoise, sample_rate=sample_rate)
for f in output_separator:
path = os.path.join(output, f)
if not os.path.exists(path): logger.error(translations["not_found"].format(name=path))
if '_(Instrumental)_' in f: os.rename(path, os.path.splitext(path)[0].replace("(", "").replace(")", "") + ".wav")
elif '_(Vocals)_' in f:
rename_file = os.path.splitext(path)[0].replace("(", "").replace(")", "") + ".wav"
os.rename(path, rename_file)
return rename_file
def separator_reverb_audio(input, output, segments_size, overlap, denoise, hop_length, batch_size, sample_rate):
if not os.path.exists(input):
logger.warning(translations["input_not_valid"])
return None
if not os.path.exists(output):
logger.warning(translations["output_not_valid"])
return None
logger.info(f"{translations['dereverb']}: {input}...")
output_dereverb = separator_main(audio_file=input, model_filename="Reverb_HQ_By_FoxJoy.onnx", output_format="wav", output_dir=output, mdx_segment_size=segments_size, mdx_overlap=overlap, mdx_batch_size=hop_length, mdx_hop_length=batch_size, mdx_enable_denoise=denoise, sample_rate=sample_rate)
for f in output_dereverb:
path = os.path.join(output, f)
if not os.path.exists(path): logger.error(translations["not_found"].format(name=path))
if '_(Reverb)_' in f: os.rename(path, os.path.splitext(path)[0].replace("(", "").replace(")", "") + ".wav")
elif '_(No Reverb)_' in f:
rename_file = os.path.splitext(path)[0].replace("(", "").replace(")", "") + ".wav"
os.rename(path, rename_file)
logger.info(f"{translations['dereverb_success']}: {rename_file}")
return rename_file
def separator_main(audio_file=None, model_filename="Kim_Vocal_1.onnx", output_format="wav", output_dir=".", mdx_segment_size=256, mdx_overlap=0.25, mdx_batch_size=1, mdx_hop_length=1024, mdx_enable_denoise=True, sample_rate=44100):
try:
separator = Separator(logger=logger, output_dir=output_dir, output_format=output_format, output_bitrate=None, normalization_threshold=0.9, sample_rate=sample_rate, mdx_params={"hop_length": mdx_hop_length, "segment_size": mdx_segment_size, "overlap": mdx_overlap, "batch_size": mdx_batch_size, "enable_denoise": mdx_enable_denoise})
separator.load_model(model_filename=model_filename)
return separator.separate(audio_file)
except:
logger.debug(translations["default_setting"])
separator = Separator(logger=logger, output_dir=output_dir, output_format=output_format, output_bitrate=None, normalization_threshold=0.9, sample_rate=44100, mdx_params={"hop_length": 1024, "segment_size": 256, "overlap": 0.25, "batch_size": 1, "enable_denoise": mdx_enable_denoise})
separator.load_model(model_filename=model_filename)
return separator.separate(audio_file)
if __name__ == "__main__": main()