RVC-GUI / main /app /core /inference.py
AnhP's picture
Upload 170 files
1e4a2ab verified
raw
history blame
24.5 kB
import os
import re
import sys
import shutil
import librosa
import datetime
import subprocess
import numpy as np
sys.path.append(os.getcwd())
from main.app.core.ui import gr_info, gr_warning, gr_error, process_output
from main.app.variables import logger, config, configs, translations, python
def convert(pitch, filter_radius, index_rate, rms_mix_rate, protect, hop_length, f0_method, input_path, output_path, pth_path, index_path, f0_autotune, clean_audio, clean_strength, export_format, embedder_model, resample_sr, split_audio, f0_autotune_strength, checkpointing, f0_onnx, embedders_mode, formant_shifting, formant_qfrency, formant_timbre, f0_file, proposal_pitch, proposal_pitch_threshold):
if config.debug_mode: subprocess.run([python, configs["convert_path"], "--pitch", str(pitch), "--filter_radius", str(filter_radius), "--index_rate", str(index_rate), "--rms_mix_rate", str(rms_mix_rate), "--protect", str(protect), "--hop_length", str(hop_length), "--f0_method", f0_method, "--input_path", input_path, "--output_path", output_path, "--pth_path", pth_path, "--index_path", index_path, "--f0_autotune", str(f0_autotune), "--clean_audio", str(clean_audio), "--clean_strength", str(clean_strength), "--export_format", export_format, "--embedder_model", embedder_model, "--resample_sr", str(resample_sr), "--split_audio", str(split_audio), "--f0_autotune_strength", str(f0_autotune_strength), "--checkpointing", str(checkpointing), "--f0_onnx", str(f0_onnx), "--embedders_mode", embedders_mode, "--formant_shifting", str(formant_shifting), "--formant_qfrency", str(formant_qfrency), "--formant_timbre", str(formant_timbre), "--f0_file", f0_file, "--proposal_pitch", str(proposal_pitch), "--proposal_pitch_threshold", str(proposal_pitch_threshold)])
else:
from main.inference.conversion.convert import run_convert_script
run_convert_script(pitch, filter_radius, index_rate, rms_mix_rate, protect, hop_length, f0_method, input_path, output_path, pth_path, index_path, f0_autotune, f0_autotune_strength, clean_audio, clean_strength, export_format, embedder_model, resample_sr, split_audio, checkpointing, f0_file, f0_onnx, embedders_mode, formant_shifting, formant_qfrency, formant_timbre, proposal_pitch, proposal_pitch_threshold)
def convert_audio(clean, autotune, use_audio, use_original, convert_backing, not_merge_backing, merge_instrument, pitch, clean_strength, model, index, index_rate, input, output, format, method, hybrid_method, hop_length, embedders, custom_embedders, resample_sr, filter_radius, rms_mix_rate, protect, split_audio, f0_autotune_strength, input_audio_name, checkpointing, onnx_f0_mode, formant_shifting, formant_qfrency, formant_timbre, f0_file, embedders_mode, proposal_pitch, proposal_pitch_threshold):
model_path = os.path.join(configs["weights_path"], model) if not os.path.exists(model) else model
return_none = [None]*6
return_none[5] = {"visible": True, "__type__": "update"}
if not use_audio:
if merge_instrument or not_merge_backing or convert_backing or use_original:
gr_warning(translations["turn_on_use_audio"])
return return_none
if use_original:
if convert_backing:
gr_warning(translations["turn_off_convert_backup"])
return return_none
elif not_merge_backing:
gr_warning(translations["turn_off_merge_backup"])
return return_none
if not model or not os.path.exists(model_path) or os.path.isdir(model_path) or not model.endswith((".pth", ".onnx")):
gr_warning(translations["provide_file"].format(filename=translations["model"]))
return return_none
f0method, embedder_model = (method if method != "hybrid" else hybrid_method), (embedders if embedders != "custom" else custom_embedders)
if use_audio:
output_audio = os.path.join(configs["audios_path"], input_audio_name)
from main.library.utils import pydub_load
def get_audio_file(label):
matching_files = [f for f in os.listdir(output_audio) if label in f]
if not matching_files: return translations["notfound"]
return os.path.join(output_audio, matching_files[0])
output_path = os.path.join(output_audio, f"Convert_Vocals.{format}")
output_backing = os.path.join(output_audio, f"Convert_Backing.{format}")
output_merge_backup = os.path.join(output_audio, f"Vocals+Backing.{format}")
output_merge_instrument = os.path.join(output_audio, f"Vocals+Instruments.{format}")
if os.path.exists(output_audio): os.makedirs(output_audio, exist_ok=True)
output_path = process_output(output_path)
if use_original:
original_vocal = get_audio_file('Original_Vocals_No_Reverb.')
if original_vocal == translations["notfound"]: original_vocal = get_audio_file('Original_Vocals.')
if original_vocal == translations["notfound"]:
gr_warning(translations["not_found_original_vocal"])
return return_none
input_path = original_vocal
else:
main_vocal = get_audio_file('Main_Vocals_No_Reverb.')
backing_vocal = get_audio_file('Backing_Vocals_No_Reverb.')
if main_vocal == translations["notfound"]: main_vocal = get_audio_file('Main_Vocals.')
if not not_merge_backing and backing_vocal == translations["notfound"]: backing_vocal = get_audio_file('Backing_Vocals.')
if main_vocal == translations["notfound"]:
gr_warning(translations["not_found_main_vocal"])
return return_none
if not not_merge_backing and backing_vocal == translations["notfound"]:
gr_warning(translations["not_found_backing_vocal"])
return return_none
input_path = main_vocal
backing_path = backing_vocal
gr_info(translations["convert_vocal"])
convert(pitch, filter_radius, index_rate, rms_mix_rate, protect, hop_length, f0method, input_path, output_path, model_path, index, autotune, clean, clean_strength, format, embedder_model, resample_sr, split_audio, f0_autotune_strength, checkpointing, onnx_f0_mode, embedders_mode, formant_shifting, formant_qfrency, formant_timbre, f0_file, proposal_pitch, proposal_pitch_threshold)
gr_info(translations["convert_success"])
if convert_backing:
output_backing = process_output(output_backing)
gr_info(translations["convert_backup"])
convert(pitch, filter_radius, index_rate, rms_mix_rate, protect, hop_length, f0method, backing_path, output_backing, model_path, index, autotune, clean, clean_strength, format, embedder_model, resample_sr, split_audio, f0_autotune_strength, checkpointing, onnx_f0_mode, embedders_mode, formant_shifting, formant_qfrency, formant_timbre, f0_file, proposal_pitch, proposal_pitch_threshold)
gr_info(translations["convert_backup_success"])
try:
if not not_merge_backing and not use_original:
backing_source = output_backing if convert_backing else backing_vocal
output_merge_backup = process_output(output_merge_backup)
gr_info(translations["merge_backup"])
pydub_load(output_path, volume=-4).overlay(pydub_load(backing_source, volume=-6)).export(output_merge_backup, format=format)
gr_info(translations["merge_success"])
if merge_instrument:
vocals = output_merge_backup if not not_merge_backing and not use_original else output_path
output_merge_instrument = process_output(output_merge_instrument)
gr_info(translations["merge_instruments_process"])
instruments = get_audio_file('Instruments.')
if instruments == translations["notfound"]:
gr_warning(translations["not_found_instruments"])
output_merge_instrument = None
else: pydub_load(instruments, volume=-7).overlay(pydub_load(vocals, volume=-4 if use_original else None)).export(output_merge_instrument, format=format)
gr_info(translations["merge_success"])
except:
return return_none
return [(None if use_original else output_path), output_backing, (None if not_merge_backing and use_original else output_merge_backup), (output_path if use_original else None), (output_merge_instrument if merge_instrument else None), {"visible": True, "__type__": "update"}]
else:
if not input or not os.path.exists(input) or os.path.isdir(input):
gr_warning(translations["input_not_valid"])
return return_none
if not output:
gr_warning(translations["output_not_valid"])
return return_none
output = output.replace("wav", format)
if os.path.isdir(input):
gr_info(translations["is_folder"])
if not [f for f in os.listdir(input) if f.lower().endswith(("wav", "mp3", "flac", "ogg", "opus", "m4a", "mp4", "aac", "alac", "wma", "aiff", "webm", "ac3"))]:
gr_warning(translations["not_found_in_folder"])
return return_none
gr_info(translations["batch_convert"])
output_dir = os.path.dirname(output) or output
convert(pitch, filter_radius, index_rate, rms_mix_rate, protect, hop_length, f0method, input, output_dir, model_path, index, autotune, clean, clean_strength, format, embedder_model, resample_sr, split_audio, f0_autotune_strength, checkpointing, onnx_f0_mode, embedders_mode, formant_shifting, formant_qfrency, formant_timbre, f0_file, proposal_pitch, proposal_pitch_threshold)
gr_info(translations["batch_convert_success"])
return return_none
else:
output_dir = os.path.dirname(output) or output
if not os.path.exists(output_dir): os.makedirs(output_dir, exist_ok=True)
output = process_output(output)
gr_info(translations["convert_vocal"])
convert(pitch, filter_radius, index_rate, rms_mix_rate, protect, hop_length, f0method, input, output, model_path, index, autotune, clean, clean_strength, format, embedder_model, resample_sr, split_audio, f0_autotune_strength, checkpointing, onnx_f0_mode, embedders_mode, formant_shifting, formant_qfrency, formant_timbre, f0_file, proposal_pitch, proposal_pitch_threshold)
gr_info(translations["convert_success"])
return_none[0] = output
return return_none
def convert_selection(clean, autotune, use_audio, use_original, convert_backing, not_merge_backing, merge_instrument, pitch, clean_strength, model, index, index_rate, input, output, format, method, hybrid_method, hop_length, embedders, custom_embedders, resample_sr, filter_radius, rms_mix_rate, protect, split_audio, f0_autotune_strength, checkpointing, onnx_f0_mode, formant_shifting, formant_qfrency, formant_timbre, f0_file, embedders_mode, proposal_pitch, proposal_pitch_threshold):
if use_audio:
gr_info(translations["search_separate"])
choice = [f for f in os.listdir(configs["audios_path"]) if os.path.isdir(os.path.join(configs["audios_path"], f))] if config.debug_mode else [f for f in os.listdir(configs["audios_path"]) if os.path.isdir(os.path.join(configs["audios_path"], f)) and any(file.lower().endswith((".wav", ".mp3", ".flac", ".ogg", ".opus", ".m4a", ".mp4", ".aac", ".alac", ".wma", ".aiff", ".webm", ".ac3")) for file in os.listdir(os.path.join(configs["audios_path"], f)))]
gr_info(translations["found_choice"].format(choice=len(choice)))
if len(choice) == 0:
gr_warning(translations["separator==0"])
return [{"choices": [], "value": "", "interactive": False, "visible": False, "__type__": "update"}, None, None, None, None, None, {"visible": True, "__type__": "update"}, {"visible": False, "__type__": "update"}]
elif len(choice) == 1:
convert_output = convert_audio(clean, autotune, use_audio, use_original, convert_backing, not_merge_backing, merge_instrument, pitch, clean_strength, model, index, index_rate, None, None, format, method, hybrid_method, hop_length, embedders, custom_embedders, resample_sr, filter_radius, rms_mix_rate, protect, split_audio, f0_autotune_strength, choice[0], checkpointing, onnx_f0_mode, formant_shifting, formant_qfrency, formant_timbre, f0_file, embedders_mode, proposal_pitch, proposal_pitch_threshold)
return [{"choices": [], "value": "", "interactive": False, "visible": False, "__type__": "update"}, convert_output[0], convert_output[1], convert_output[2], convert_output[3], convert_output[4], {"visible": True, "__type__": "update"}, {"visible": False, "__type__": "update"}]
else: return [{"choices": choice, "value": choice[0], "interactive": True, "visible": True, "__type__": "update"}, None, None, None, None, None, {"visible": False, "__type__": "update"}, {"visible": True, "__type__": "update"}]
else:
main_convert = convert_audio(clean, autotune, use_audio, use_original, convert_backing, not_merge_backing, merge_instrument, pitch, clean_strength, model, index, index_rate, input, output, format, method, hybrid_method, hop_length, embedders, custom_embedders, resample_sr, filter_radius, rms_mix_rate, protect, split_audio, f0_autotune_strength, None, checkpointing, onnx_f0_mode, formant_shifting, formant_qfrency, formant_timbre, f0_file, embedders_mode, proposal_pitch, proposal_pitch_threshold)
return [{"choices": [], "value": "", "interactive": False, "visible": False, "__type__": "update"}, main_convert[0], None, None, None, None, {"visible": True, "__type__": "update"}, {"visible": False, "__type__": "update"}]
def convert_with_whisper(num_spk, model_size, cleaner, clean_strength, autotune, f0_autotune_strength, checkpointing, model_1, model_2, model_index_1, model_index_2, pitch_1, pitch_2, index_strength_1, index_strength_2, export_format, input_audio, output_audio, onnx_f0_mode, method, hybrid_method, hop_length, embed_mode, embedders, custom_embedders, resample_sr, filter_radius, rms_mix_rate, protect, formant_shifting, formant_qfrency_1, formant_timbre_1, formant_qfrency_2, formant_timbre_2, proposal_pitch, proposal_pitch_threshold):
from pydub import AudioSegment
from sklearn.cluster import AgglomerativeClustering
from main.library.speaker_diarization.audio import Audio
from main.library.speaker_diarization.segment import Segment
from main.library.speaker_diarization.whisper import load_model
from main.library.utils import check_spk_diarization, pydub_load
from main.library.speaker_diarization.embedding import SpeechBrainPretrainedSpeakerEmbedding
check_spk_diarization(model_size)
model_pth_1, model_pth_2 = os.path.join(configs["weights_path"], model_1) if not os.path.exists(model_1) else model_1, os.path.join(configs["weights_path"], model_2) if not os.path.exists(model_2) else model_2
if (not model_1 or not os.path.exists(model_pth_1) or os.path.isdir(model_pth_1) or not model_pth_1.endswith((".pth", ".onnx"))) and (not model_2 or not os.path.exists(model_pth_2) or os.path.isdir(model_pth_2) or not model_pth_2.endswith((".pth", ".onnx"))):
gr_warning(translations["provide_file"].format(filename=translations["model"]))
return None
if not model_1: model_pth_1 = model_pth_2
if not model_2: model_pth_2 = model_pth_1
if not input_audio or not os.path.exists(input_audio) or os.path.isdir(input_audio):
gr_warning(translations["input_not_valid"])
return None
if not output_audio:
gr_warning(translations["output_not_valid"])
return None
output_audio = process_output(output_audio)
gr_info(translations["start_whisper"])
try:
audio = Audio()
embedding_model = SpeechBrainPretrainedSpeakerEmbedding(embedding=os.path.join(configs["speaker_diarization_path"], "models", "speechbrain"), device=config.device)
segments = load_model(model_size, device=config.device).transcribe(input_audio, fp16=configs.get("fp16", False), word_timestamps=True)["segments"]
y, sr = librosa.load(input_audio, sr=None)
duration = len(y) / sr
def segment_embedding(segment):
waveform, _ = audio.crop(input_audio, Segment(segment["start"], min(duration, segment["end"])))
return embedding_model(waveform.mean(dim=0, keepdim=True)[None] if waveform.shape[0] == 2 else waveform[None])
def time(secs):
return datetime.timedelta(seconds=round(secs))
def merge_audio(files_list, time_stamps, original_file_path, output_path, format):
def extract_number(filename):
match = re.search(r'_(\d+)', filename)
return int(match.group(1)) if match else 0
total_duration = len(pydub_load(original_file_path))
combined = AudioSegment.empty()
current_position = 0
for file, (start_i, end_i) in zip(sorted(files_list, key=extract_number), time_stamps):
if start_i > current_position: combined += AudioSegment.silent(duration=start_i - current_position)
combined += pydub_load(file)
current_position = end_i
if current_position < total_duration: combined += AudioSegment.silent(duration=total_duration - current_position)
combined.export(output_path, format=format)
return output_path
embeddings = np.zeros(shape=(len(segments), 192))
for i, segment in enumerate(segments):
embeddings[i] = segment_embedding(segment)
labels = AgglomerativeClustering(num_spk).fit(np.nan_to_num(embeddings)).labels_
for i in range(len(segments)):
segments[i]["speaker"] = 'SPEAKER ' + str(labels[i] + 1)
merged_segments, current_text = [], []
current_speaker, current_start = None, None
for i, segment in enumerate(segments):
speaker = segment["speaker"]
start_time = segment["start"]
text = segment["text"][1:]
if speaker == current_speaker:
current_text.append(text)
end_time = segment["end"]
else:
if current_speaker is not None: merged_segments.append({"speaker": current_speaker, "start": current_start, "end": end_time, "text": " ".join(current_text)})
current_speaker = speaker
current_start = start_time
current_text = [text]
end_time = segment["end"]
if current_speaker is not None: merged_segments.append({"speaker": current_speaker, "start": current_start, "end": end_time, "text": " ".join(current_text)})
gr_info(translations["whisper_done"])
x = ""
for segment in merged_segments:
x += f"\n{segment['speaker']} {str(time(segment['start']))} - {str(time(segment['end']))}\n"
x += segment["text"] + "\n"
logger.info(x)
gr_info(translations["process_audio"])
audio = pydub_load(input_audio)
output_folder = "audios_temp"
if os.path.exists(output_folder): shutil.rmtree(output_folder, ignore_errors=True)
for f in [output_folder, os.path.join(output_folder, "1"), os.path.join(output_folder, "2")]:
os.makedirs(f, exist_ok=True)
time_stamps, processed_segments = [], []
for i, segment in enumerate(merged_segments):
start_ms = int(segment["start"] * 1000)
end_ms = int(segment["end"] * 1000)
index = i + 1
segment_filename = os.path.join(output_folder, "1" if i % 2 == 1 else "2", f"segment_{index}.wav")
audio[start_ms:end_ms].export(segment_filename, format="wav")
processed_segments.append(os.path.join(output_folder, "1" if i % 2 == 1 else "2", f"segment_{index}_output.wav"))
time_stamps.append((start_ms, end_ms))
f0method, embedder_model = (method if method != "hybrid" else hybrid_method), (embedders if embedders != "custom" else custom_embedders)
gr_info(translations["process_done_start_convert"])
convert(pitch_1, filter_radius, index_strength_1, rms_mix_rate, protect, hop_length, f0method, os.path.join(output_folder, "1"), output_folder, model_pth_1, model_index_1, autotune, cleaner, clean_strength, "wav", embedder_model, resample_sr, False, f0_autotune_strength, checkpointing, onnx_f0_mode, embed_mode, formant_shifting, formant_qfrency_1, formant_timbre_1, "", proposal_pitch, proposal_pitch_threshold)
convert(pitch_2, filter_radius, index_strength_2, rms_mix_rate, protect, hop_length, f0method, os.path.join(output_folder, "2"), output_folder, model_pth_2, model_index_2, autotune, cleaner, clean_strength, "wav", embedder_model, resample_sr, False, f0_autotune_strength, checkpointing, onnx_f0_mode, embed_mode, formant_shifting, formant_qfrency_2, formant_timbre_2, "", proposal_pitch, proposal_pitch_threshold)
gr_info(translations["convert_success"])
return merge_audio(processed_segments, time_stamps, input_audio, output_audio.replace("wav", export_format), export_format)
except Exception as e:
gr_error(translations["error_occurred"].format(e=e))
import traceback
logger.debug(traceback.format_exc())
return None
finally:
if os.path.exists("audios_temp"): shutil.rmtree("audios_temp", ignore_errors=True)
def convert_tts(clean, autotune, pitch, clean_strength, model, index, index_rate, input, output, format, method, hybrid_method, hop_length, embedders, custom_embedders, resample_sr, filter_radius, rms_mix_rate, protect, split_audio, f0_autotune_strength, checkpointing, onnx_f0_mode, formant_shifting, formant_qfrency, formant_timbre, f0_file, embedders_mode, proposal_pitch, proposal_pitch_threshold):
model_path = os.path.join(configs["weights_path"], model) if not os.path.exists(model) else model
if not model_path or not os.path.exists(model_path) or os.path.isdir(model_path) or not model.endswith((".pth", ".onnx")):
gr_warning(translations["provide_file"].format(filename=translations["model"]))
return None
if not input or not os.path.exists(input):
gr_warning(translations["input_not_valid"])
return None
if os.path.isdir(input):
input_audio = [f for f in os.listdir(input) if "tts" in f and f.lower().endswith(("wav", "mp3", "flac", "ogg", "opus", "m4a", "mp4", "aac", "alac", "wma", "aiff", "webm", "ac3"))]
if not input_audio:
gr_warning(translations["not_found_in_folder"])
return None
input = os.path.join(input, input_audio[0])
if not output:
gr_warning(translations["output_not_valid"])
return None
output = output.replace("wav", format)
if os.path.isdir(output): output = os.path.join(output, f"tts.{format}")
output_dir = os.path.dirname(output)
if not os.path.exists(output_dir): os.makedirs(output_dir, exist_ok=True)
output = process_output(output)
f0method = method if method != "hybrid" else hybrid_method
embedder_model = embedders if embedders != "custom" else custom_embedders
gr_info(translations["convert_vocal"])
convert(pitch, filter_radius, index_rate, rms_mix_rate, protect, hop_length, f0method, input, output, model_path, index, autotune, clean, clean_strength, format, embedder_model, resample_sr, split_audio, f0_autotune_strength, checkpointing, onnx_f0_mode, embedders_mode, formant_shifting, formant_qfrency, formant_timbre, f0_file, proposal_pitch, proposal_pitch_threshold)
gr_info(translations["convert_success"])
return output