RVC-GUI / main /library /utils.py
AnhP's picture
Upload 170 files
1e4a2ab verified
raw
history blame
10.6 kB
import os
import re
import sys
import torch
import codecs
import librosa
import logging
import onnxruntime
import numpy as np
import torch.nn as nn
import soundfile as sf
from pydub import AudioSegment
from transformers import HubertModel
sys.path.append(os.getcwd())
from main.tools import huggingface
from main.library.architectures import fairseq
from main.app.variables import translations, configs, config, embedders_model, logger
for l in ["httpx", "httpcore"]:
logging.getLogger(l).setLevel(logging.ERROR)
class HubertModelWithFinalProj(HubertModel):
def __init__(self, config):
super().__init__(config)
self.final_proj = nn.Linear(config.hidden_size, config.classifier_proj_size)
def check_assets(method, hubert, f0_onnx=False, embedders_mode="fairseq"):
predictors_url = codecs.decode("uggcf://uhttvatsnpr.pb/NauC/Ivrganzrfr-EIP-Cebwrpg/erfbyir/znva/cerqvpgbef/", "rot13")
embedders_url = codecs.decode("uggcf://uhttvatsnpr.pb/NauC/Ivrganzrfr-EIP-Cebwrpg/erfbyir/znva/rzorqqref/", "rot13")
if f0_onnx: method += "-onnx"
if embedders_mode == "spin": embedders_mode, hubert = "transformers", "spin"
def download_predictor(predictor):
model_path = os.path.join(configs["predictors_path"], predictor)
if not os.path.exists(os.path.join(configs["predictors_path"], predictor)):
huggingface.HF_download_file(
predictors_url + predictor,
model_path
)
return os.path.exists(model_path)
def download_embedder(embedders_mode, hubert):
model_path = os.path.join(configs["embedders_path"], hubert)
if embedders_mode != "transformers" and not os.path.exists(model_path): huggingface.HF_download_file("".join([embedders_url, "fairseq/" if embedders_mode == "fairseq" else "onnx/", hubert]), model_path)
elif embedders_mode == "transformers":
url, hubert = ("transformers/", hubert) if hubert != "spin" else ("spin", "")
bin_file = os.path.join(model_path, "model.safetensors")
config_file = os.path.join(model_path, "config.json")
os.makedirs(model_path, exist_ok=True)
if not os.path.exists(bin_file): huggingface.HF_download_file("".join([embedders_url, url, hubert, "/model.safetensors"]), bin_file)
if not os.path.exists(config_file): huggingface.HF_download_file("".join([embedders_url, url, hubert, "/config.json"]), config_file)
return os.path.exists(bin_file) and os.path.exists(config_file)
return os.path.exists(model_path)
model_dict = {
**dict.fromkeys(["rmvpe", "rmvpe-legacy"], "rmvpe.pt"),
**dict.fromkeys(["rmvpe-onnx", "rmvpe-legacy-onnx"], "rmvpe.onnx"),
**dict.fromkeys(["fcpe"], "fcpe.pt"),
**dict.fromkeys(["fcpe-legacy"], "fcpe_legacy.pt"),
**dict.fromkeys(["fcpe-onnx"], "fcpe.onnx"),
**dict.fromkeys(["fcpe-legacy-onnx"], "fcpe_legacy.onnx"),
**dict.fromkeys(["crepe-full", "mangio-crepe-full"], "crepe_full.pth"),
**dict.fromkeys(["crepe-full-onnx", "mangio-crepe-full-onnx"], "crepe_full.onnx"),
**dict.fromkeys(["crepe-large", "mangio-crepe-large"], "crepe_large.pth"),
**dict.fromkeys(["crepe-large-onnx", "mangio-crepe-large-onnx"], "crepe_large.onnx"),
**dict.fromkeys(["crepe-medium", "mangio-crepe-medium"], "crepe_medium.pth"),
**dict.fromkeys(["crepe-medium-onnx", "mangio-crepe-medium-onnx"], "crepe_medium.onnx"),
**dict.fromkeys(["crepe-small", "mangio-crepe-small"], "crepe_small.pth"),
**dict.fromkeys(["crepe-small-onnx", "mangio-crepe-small-onnx"], "crepe_small.onnx"),
**dict.fromkeys(["crepe-tiny", "mangio-crepe-tiny"], "crepe_tiny.pth"),
**dict.fromkeys(["crepe-tiny-onnx", "mangio-crepe-tiny-onnx"], "crepe_tiny.onnx"),
**dict.fromkeys(["fcn"], "fcn.pt"),
**dict.fromkeys(["fcn-onnx"], "fcn.onnx")
}
results = []
count = configs.get("num_of_restart", 5)
for i in range(count):
if "hybrid" in method:
methods_str = re.search("hybrid\[(.+)\]", method)
if methods_str: methods = [method.strip() for method in methods_str.group(1).split("+")]
for method in methods:
if method in model_dict: results.append(download_predictor(model_dict[method]))
elif method in model_dict: results.append(download_predictor(model_dict[method]))
if hubert in embedders_model:
if embedders_mode != "transformers": hubert += ".pt" if embedders_mode == "fairseq" else ".onnx"
results.append(download_embedder(embedders_mode, hubert))
if all(results): return
else: results = []
logger.warning(translations["check_assets_error"].format(count=count))
sys.exit(1)
def check_spk_diarization(model_size):
whisper_model = os.path.join(configs["speaker_diarization_path"], "models", f"{model_size}.pt")
if not os.path.exists(whisper_model): huggingface.HF_download_file("".join([codecs.decode("uggcf://uhttvatsnpr.pb/NauC/Ivrganzrfr-EIP-Cebwrpg/erfbyir/znva/fcrnxre_qvnevmngvba/", "rot13"), model_size, ".pt"]), whisper_model)
speechbrain_path = os.path.join(configs["speaker_diarization_path"], "models", "speechbrain")
if not os.path.exists(speechbrain_path): os.makedirs(speechbrain_path, exist_ok=True)
for f in ["classifier.ckpt", "config.json", "embedding_model.ckpt", "hyperparams.yaml", "mean_var_norm_emb.ckpt"]:
speechbrain_model = os.path.join(speechbrain_path, f)
if not os.path.exists(speechbrain_model): huggingface.HF_download_file(codecs.decode("uggcf://uhttvatsnpr.pb/NauC/Ivrganzrfr-EIP-Cebwrpg/erfbyir/znva/fcrnxre_qvnevmngvba/fcrrpuoenva/", "rot13") + f, speechbrain_model)
def load_audio(file, sample_rate=16000, formant_shifting=False, formant_qfrency=0.8, formant_timbre=0.8):
try:
file = file.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
if not os.path.isfile(file): raise FileNotFoundError(translations["not_found"].format(name=file))
try:
audio, sr = sf.read(file, dtype=np.float32)
except:
audio, sr = librosa.load(file, sr=None)
if len(audio.shape) > 1: audio = librosa.to_mono(audio.T)
if sr != sample_rate: audio = librosa.resample(audio, orig_sr=sr, target_sr=sample_rate, res_type="soxr_vhq")
if formant_shifting:
from main.library.algorithm.stftpitchshift import StftPitchShift
pitchshifter = StftPitchShift(1024, 32, sample_rate)
audio = pitchshifter.shiftpitch(audio, factors=1, quefrency=formant_qfrency * 1e-3, distortion=formant_timbre)
except Exception as e:
raise RuntimeError(f"{translations['errors_loading_audio']}: {e}")
return audio.flatten()
def pydub_load(input_path, volume = None):
try:
if input_path.endswith(".wav"): audio = AudioSegment.from_wav(input_path)
elif input_path.endswith(".mp3"): audio = AudioSegment.from_mp3(input_path)
elif input_path.endswith(".ogg"): audio = AudioSegment.from_ogg(input_path)
else: audio = AudioSegment.from_file(input_path)
except:
audio = AudioSegment.from_file(input_path)
return audio if volume is None else audio + volume
def load_embedders_model(embedder_model, embedders_mode="fairseq"):
if embedders_mode == "fairseq": embedder_model += ".pt"
elif embedders_mode == "onnx": embedder_model += ".onnx"
elif embedders_mode == "spin": embedders_mode, embedder_model = "transformers", "spin"
embedder_model_path = os.path.join(configs["embedders_path"], embedder_model)
if not os.path.exists(embedder_model_path): raise FileNotFoundError(f"{translations['not_found'].format(name=translations['model'])}: {embedder_model}")
try:
if embedders_mode == "fairseq":
embed_suffix = ".pt"
hubert_model = fairseq.load_model(embedder_model_path)
elif embedders_mode == "onnx":
sess_options = onnxruntime.SessionOptions()
sess_options.log_severity_level = 3
embed_suffix = ".onnx"
hubert_model = onnxruntime.InferenceSession(embedder_model_path, sess_options=sess_options, providers=get_providers())
elif embedders_mode == "transformers":
embed_suffix = ".safetensors"
hubert_model = HubertModelWithFinalProj.from_pretrained(embedder_model_path)
else: raise ValueError(translations["option_not_valid"])
except Exception as e:
raise RuntimeError(translations["read_model_error"].format(e=e))
return hubert_model, embed_suffix
def cut(audio, sr, db_thresh=-60, min_interval=250):
from main.inference.preprocess.slicer2 import Slicer2
slicer = Slicer2(sr=sr, threshold=db_thresh, min_interval=min_interval)
return slicer.slice2(audio)
def restore(segments, total_len, dtype=np.float32):
out = []
last_end = 0
for start, end, processed_seg in segments:
if start > last_end: out.append(np.zeros(start - last_end, dtype=dtype))
out.append(processed_seg)
last_end = end
if last_end < total_len: out.append(np.zeros(total_len - last_end, dtype=dtype))
return np.concatenate(out, axis=-1)
def get_providers():
ort_providers = onnxruntime.get_available_providers()
if "CUDAExecutionProvider" in ort_providers and config.device.startswith("cuda"):
providers = ["CUDAExecutionProvider"]
elif "DmlExecutionProvider" in ort_providers and config.device.startswith("ocl"):
providers = ["DmlExecutionProvider"]
elif "CoreMLExecutionProvider" in ort_providers and config.device.startswith("mps"):
providers = ["CoreMLExecutionProvider"]
else:
providers = ["CPUExecutionProvider"]
logger.info(translations["running_in_cpu"])
if not providers[0].startswith("CPUExecutionProvider"): logger.debug(translations["onnx_have"].format(have=providers[0]))
return providers
def extract_features(model, feats, version):
feats0 = model.run(
[model.get_outputs()[0].name, model.get_outputs()[1].name],
{
"feats": feats.detach().cpu().numpy()
}
)[0 if version == "v1" else 1]
return torch.as_tensor(feats0, dtype=torch.float32, device=feats.device)