RVC-GUI / main /library /architectures /mdx_separator.py
AnhP's picture
Upload 170 files
1e4a2ab verified
raw
history blame
11.3 kB
import os
import sys
import onnx
import torch
import platform
import warnings
import onnx2torch
import numpy as np
import onnxruntime as ort
from tqdm import tqdm
sys.path.append(os.getcwd())
from main.library.uvr5_lib import spec_utils
from main.library.uvr5_lib.common_separator import CommonSeparator
warnings.filterwarnings("ignore")
class MDXSeparator(CommonSeparator):
def __init__(self, common_config, arch_config):
super().__init__(config=common_config)
self.segment_size = arch_config.get("segment_size")
self.overlap = arch_config.get("overlap")
self.batch_size = arch_config.get("batch_size", 1)
self.hop_length = arch_config.get("hop_length")
self.enable_denoise = arch_config.get("enable_denoise")
self.compensate = self.model_data["compensate"]
self.dim_f = self.model_data["mdx_dim_f_set"]
self.dim_t = 2 ** self.model_data["mdx_dim_t_set"]
self.n_fft = self.model_data["mdx_n_fft_scale_set"]
self.config_yaml = self.model_data.get("config_yaml", None)
self.load_model()
self.n_bins = 0
self.trim = 0
self.chunk_size = 0
self.gen_size = 0
self.stft = None
self.primary_source = None
self.secondary_source = None
self.audio_file_path = None
self.audio_file_base = None
def load_model(self):
if self.segment_size == self.dim_t:
ort_session_options = ort.SessionOptions()
ort_session_options.log_severity_level = 3
ort_inference_session = ort.InferenceSession(self.model_path, providers=self.onnx_execution_provider, sess_options=ort_session_options)
self.model_run = lambda spek: ort_inference_session.run(None, {"input": spek.cpu().numpy()})[0]
else:
self.model_run = onnx2torch.convert(onnx.load(self.model_path)) if platform.system() == 'Windows' else onnx2torch.convert(self.model_path)
self.model_run.to(self.torch_device).eval()
def separate(self, audio_file_path):
self.audio_file_path = audio_file_path
self.audio_file_base = os.path.splitext(os.path.basename(audio_file_path))[0]
mix = self.prepare_mix(self.audio_file_path)
mix = spec_utils.normalize(wave=mix, max_peak=self.normalization_threshold)
source = self.demix(mix)
output_files = []
if not isinstance(self.primary_source, np.ndarray):
self.primary_source = spec_utils.normalize(wave=source, max_peak=self.normalization_threshold).T
if not isinstance(self.secondary_source, np.ndarray):
raw_mix = self.demix(mix, is_match_mix=True)
if self.invert_using_spec:
self.secondary_source = spec_utils.invert_stem(raw_mix, source)
else:
self.secondary_source = mix.T - source.T
if not self.output_single_stem or self.output_single_stem.lower() == self.secondary_stem_name.lower():
self.secondary_stem_output_path = os.path.join(f"{self.audio_file_base}_({self.secondary_stem_name})_{self.model_name}.{self.output_format.lower()}")
self.final_process(self.secondary_stem_output_path, self.secondary_source, self.secondary_stem_name)
output_files.append(self.secondary_stem_output_path)
if not self.output_single_stem or self.output_single_stem.lower() == self.primary_stem_name.lower():
self.primary_stem_output_path = os.path.join(f"{self.audio_file_base}_({self.primary_stem_name})_{self.model_name}.{self.output_format.lower()}")
if not isinstance(self.primary_source, np.ndarray): self.primary_source = source.T
self.final_process(self.primary_stem_output_path, self.primary_source, self.primary_stem_name)
output_files.append(self.primary_stem_output_path)
return output_files
def initialize_model_settings(self):
self.n_bins = self.n_fft // 2 + 1
self.trim = self.n_fft // 2
self.chunk_size = self.hop_length * (self.segment_size - 1)
self.gen_size = self.chunk_size - 2 * self.trim
self.stft = STFT(self.n_fft, self.hop_length, self.dim_f, self.torch_device)
def initialize_mix(self, mix, is_ckpt=False):
if is_ckpt:
pad = self.gen_size + self.trim - (mix.shape[-1] % self.gen_size)
mixture = np.concatenate((np.zeros((2, self.trim), dtype="float32"), mix, np.zeros((2, pad), dtype="float32")), 1)
num_chunks = mixture.shape[-1] // self.gen_size
mix_waves = [mixture[:, i * self.gen_size : i * self.gen_size + self.chunk_size] for i in range(num_chunks)]
else:
mix_waves = []
n_sample = mix.shape[1]
pad = self.gen_size - n_sample % self.gen_size
mix_p = np.concatenate((np.zeros((2, self.trim)), mix, np.zeros((2, pad)), np.zeros((2, self.trim))), 1)
i = 0
while i < n_sample + pad:
mix_waves.append(np.array(mix_p[:, i : i + self.chunk_size]))
i += self.gen_size
mix_waves_tensor = torch.tensor(mix_waves, dtype=torch.float32).to(self.torch_device)
return mix_waves_tensor, pad
def demix(self, mix, is_match_mix=False):
self.initialize_model_settings()
tar_waves_ = []
if is_match_mix:
chunk_size = self.hop_length * (self.segment_size - 1)
overlap = 0.02
else:
chunk_size = self.chunk_size
overlap = self.overlap
gen_size = chunk_size - 2 * self.trim
mixture = np.concatenate((np.zeros((2, self.trim), dtype="float32"), mix, np.zeros((2, gen_size + self.trim - ((mix.shape[-1]) % gen_size)), dtype="float32")), 1)
step = int((1 - overlap) * chunk_size)
result = np.zeros((1, 2, mixture.shape[-1]), dtype=np.float32)
divider = np.zeros((1, 2, mixture.shape[-1]), dtype=np.float32)
total = 0
for i in tqdm(range(0, mixture.shape[-1], step), ncols=100, unit="f"):
total += 1
start = i
end = min(i + chunk_size, mixture.shape[-1])
chunk_size_actual = end - start
window = None
if overlap != 0:
window = np.hanning(chunk_size_actual)
window = np.tile(window[None, None, :], (1, 2, 1))
mix_part_ = mixture[:, start:end]
if end != i + chunk_size:
pad_size = (i + chunk_size) - end
mix_part_ = np.concatenate((mix_part_, np.zeros((2, pad_size), dtype="float32")), axis=-1)
mix_waves = torch.tensor([mix_part_], dtype=torch.float32).to(self.torch_device).split(self.batch_size)
with torch.no_grad():
batches_processed = 0
for mix_wave in mix_waves:
batches_processed += 1
tar_waves = self.run_model(mix_wave, is_match_mix=is_match_mix)
if window is not None:
tar_waves[..., :chunk_size_actual] *= window
divider[..., start:end] += window
else: divider[..., start:end] += 1
result[..., start:end] += tar_waves[..., : end - start]
tar_waves = result / divider
tar_waves_.append(tar_waves)
tar_waves = np.concatenate(np.vstack(tar_waves_)[:, :, self.trim : -self.trim], axis=-1)[:, : mix.shape[-1]]
source = tar_waves[:, 0:None]
if not is_match_mix:
source *= self.compensate
return source
def run_model(self, mix, is_match_mix=False):
spek = self.stft(mix.to(self.torch_device))
spek[:, :, :3, :] *= 0
if is_match_mix:
spec_pred = spek.cpu().numpy()
else:
if self.enable_denoise:
spec_pred_neg = self.model_run(-spek)
spec_pred_pos = self.model_run(spek)
spec_pred = (spec_pred_neg * -0.5) + (spec_pred_pos * 0.5)
else:
spec_pred = self.model_run(spek)
result = self.stft.inverse(torch.tensor(spec_pred).to(self.torch_device)).cpu().detach().numpy()
return result
class STFT:
def __init__(self, n_fft, hop_length, dim_f, device):
self.n_fft = n_fft
self.hop_length = hop_length
self.dim_f = dim_f
self.device = device
self.hann_window = torch.hann_window(window_length=self.n_fft, periodic=True)
def __call__(self, input_tensor):
is_non_standard_device = not input_tensor.device.type in ["cuda", "cpu"]
if is_non_standard_device: input_tensor = input_tensor.cpu()
batch_dimensions = input_tensor.shape[:-2]
channel_dim, time_dim = input_tensor.shape[-2:]
permuted_stft_output = torch.stft(input_tensor.reshape([-1, time_dim]), n_fft=self.n_fft, hop_length=self.hop_length, window=self.hann_window.to(input_tensor.device), center=True, return_complex=False).permute([0, 3, 1, 2])
final_output = permuted_stft_output.reshape([*batch_dimensions, channel_dim, 2, -1, permuted_stft_output.shape[-1]]).reshape([*batch_dimensions, channel_dim * 2, -1, permuted_stft_output.shape[-1]])
if is_non_standard_device: final_output = final_output.to(self.device)
return final_output[..., : self.dim_f, :]
def pad_frequency_dimension(self, input_tensor, batch_dimensions, channel_dim, freq_dim, time_dim, num_freq_bins):
return torch.cat([input_tensor, torch.zeros([*batch_dimensions, channel_dim, num_freq_bins - freq_dim, time_dim]).to(input_tensor.device)], -2)
def calculate_inverse_dimensions(self, input_tensor):
channel_dim, freq_dim, time_dim = input_tensor.shape[-3:]
return input_tensor.shape[:-3], channel_dim, freq_dim, time_dim, self.n_fft // 2 + 1
def prepare_for_istft(self, padded_tensor, batch_dimensions, channel_dim, num_freq_bins, time_dim):
permuted_tensor = padded_tensor.reshape([*batch_dimensions, channel_dim // 2, 2, num_freq_bins, time_dim]).reshape([-1, 2, num_freq_bins, time_dim]).permute([0, 2, 3, 1])
return permuted_tensor[..., 0] + permuted_tensor[..., 1] * 1.0j
def inverse(self, input_tensor):
is_non_standard_device = not input_tensor.device.type in ["cuda", "cpu"]
if is_non_standard_device: input_tensor = input_tensor.cpu()
batch_dimensions, channel_dim, freq_dim, time_dim, num_freq_bins = self.calculate_inverse_dimensions(input_tensor)
final_output = torch.istft(self.prepare_for_istft(self.pad_frequency_dimension(input_tensor, batch_dimensions, channel_dim, freq_dim, time_dim, num_freq_bins), batch_dimensions, channel_dim, num_freq_bins, time_dim), n_fft=self.n_fft, hop_length=self.hop_length, window=self.hann_window.to(input_tensor.device), center=True).reshape([*batch_dimensions, 2, -1])
if is_non_standard_device: final_output = final_output.to(self.device)
return final_output