File size: 32,210 Bytes
e0202f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
import os
import math
import torch
import librosa

import numpy as np
import soundfile as sf
import torch.nn.functional as F

from torch import nn, einsum
from functools import partial
from einops import rearrange, repeat, pack, unpack
from torch.nn.utils.parametrizations import weight_norm

os.environ["LRU_CACHE_CAPACITY"] = "3"

def exists(val):
    return val is not None

def default(value, d):
    return value if exists(value) else d

def max_neg_value(tensor):
    return -torch.finfo(tensor.dtype).max

def l2norm(tensor):
    return F.normalize(tensor, dim = -1).type(tensor.dtype)

def pad_to_multiple(tensor, multiple, dim=-1, value=0):
    seqlen = tensor.shape[dim]
    m = seqlen / multiple
    if m.is_integer(): return False, tensor
    return True, F.pad(tensor, (*((0,) * (-1 - dim) * 2), 0, (math.ceil(m) * multiple - seqlen)), value = value)

def look_around(x, backward = 1, forward = 0, pad_value = -1, dim = 2):
    t = x.shape[1]
    dims = (len(x.shape) - dim) * (0, 0)
    padded_x = F.pad(x, (*dims, backward, forward), value = pad_value)
    return torch.cat([padded_x[:, ind:(ind + t), ...] for ind in range(forward + backward + 1)], dim = dim)

def rotate_half(x):
    x1, x2 = rearrange(x, 'b ... (r d) -> b ... r d', r = 2).unbind(dim = -2)
    return torch.cat((-x2, x1), dim = -1)

def apply_rotary_pos_emb(q, k, freqs, scale = 1):
    q_len = q.shape[-2]
    q_freqs = freqs[..., -q_len:, :]
    inv_scale = scale ** -1
    if scale.ndim == 2: scale = scale[-q_len:, :]
    q = (q * q_freqs.cos() * scale) + (rotate_half(q) * q_freqs.sin() * scale)
    k = (k * freqs.cos() * inv_scale) + (rotate_half(k) * freqs.sin() * inv_scale)
    return q, k

class LocalAttention(nn.Module):
    def __init__(self, window_size, causal = False, look_backward = 1, look_forward = None, dropout = 0., shared_qk = False, rel_pos_emb_config = None, dim = None, autopad = False, exact_windowsize = False, scale = None, use_rotary_pos_emb = True, use_xpos = False, xpos_scale_base = None):
        super().__init__()
        look_forward = default(look_forward, 0 if causal else 1)
        assert not (causal and look_forward > 0)
        self.scale = scale
        self.window_size = window_size
        self.autopad = autopad
        self.exact_windowsize = exact_windowsize
        self.causal = causal
        self.look_backward = look_backward
        self.look_forward = look_forward
        self.dropout = nn.Dropout(dropout)
        self.shared_qk = shared_qk
        self.rel_pos = None
        self.use_xpos = use_xpos

        if use_rotary_pos_emb and (exists(rel_pos_emb_config) or exists(dim)): 
            if exists(rel_pos_emb_config): dim = rel_pos_emb_config[0]
            self.rel_pos = SinusoidalEmbeddings(dim, use_xpos = use_xpos, scale_base = default(xpos_scale_base, window_size // 2))

    def forward(self, q, k, v, mask = None, input_mask = None, attn_bias = None, window_size = None):
        mask = default(mask, input_mask)
        assert not (exists(window_size) and not self.use_xpos)

        _, autopad, pad_value, window_size, causal, look_backward, look_forward, shared_qk = q.shape, self.autopad, -1, default(window_size, self.window_size), self.causal, self.look_backward, self.look_forward, self.shared_qk
        (q, packed_shape), (k, _), (v, _) = map(lambda t: pack([t], '* n d'), (q, k, v))

        if autopad:
            orig_seq_len = q.shape[1]
            (_, q), (_, k), (_, v) = map(lambda t: pad_to_multiple(t, self.window_size, dim = -2), (q, k, v))

        b, n, dim_head, device, dtype = *q.shape, q.device, q.dtype
        scale = default(self.scale, dim_head ** -0.5)
        assert (n % window_size) == 0
        windows = n // window_size
        if shared_qk: k = l2norm(k)

        seq = torch.arange(n, device = device)
        b_t = rearrange(seq, '(w n) -> 1 w n', w = windows, n = window_size)
        bq, bk, bv = map(lambda t: rearrange(t, 'b (w n) d -> b w n d', w = windows), (q, k, v))
        bq = bq * scale
        look_around_kwargs = dict(backward =  look_backward, forward =  look_forward, pad_value = pad_value)
        bk = look_around(bk, **look_around_kwargs)
        bv = look_around(bv, **look_around_kwargs)

        if exists(self.rel_pos):
            pos_emb, xpos_scale = self.rel_pos(bk)
            bq, bk = apply_rotary_pos_emb(bq, bk, pos_emb, scale = xpos_scale)

        bq_t = b_t
        bq_k = look_around(b_t, **look_around_kwargs)
        bq_t = rearrange(bq_t, '... i -> ... i 1')
        bq_k = rearrange(bq_k, '... j -> ... 1 j')
        pad_mask = bq_k == pad_value
        sim = einsum('b h i e, b h j e -> b h i j', bq, bk)

        if exists(attn_bias):
            heads = attn_bias.shape[0]
            assert (b % heads) == 0
            attn_bias = repeat(attn_bias, 'h i j -> (b h) 1 i j', b = b // heads)
            sim = sim + attn_bias

        mask_value = max_neg_value(sim)

        if shared_qk:
            self_mask = bq_t == bq_k
            sim = sim.masked_fill(self_mask, -5e4)
            del self_mask

        if causal:
            causal_mask = bq_t < bq_k
            if self.exact_windowsize: causal_mask = causal_mask | (bq_t > (bq_k + (self.window_size * self.look_backward)))
            sim = sim.masked_fill(causal_mask, mask_value)
            del causal_mask

        sim = sim.masked_fill(((bq_k - (self.window_size * self.look_forward)) > bq_t) | (bq_t > (bq_k + (self.window_size * self.look_backward))) | pad_mask, mask_value) if not causal and self.exact_windowsize else sim.masked_fill(pad_mask, mask_value)

        if exists(mask):
            batch = mask.shape[0]
            assert (b % batch) == 0
            h = b // mask.shape[0]
            if autopad: _, mask = pad_to_multiple(mask, window_size, dim = -1, value = False)
            mask = repeat(rearrange(look_around(rearrange(mask, '... (w n) -> (...) w n', w = windows, n = window_size), **{**look_around_kwargs, 'pad_value': False}), '... j -> ... 1 j'), 'b ... -> (b h) ...', h = h)
            sim = sim.masked_fill(~mask, mask_value)
            del mask

        out = rearrange(einsum('b h i j, b h j e -> b h i e', self.dropout(sim.softmax(dim = -1)), bv), 'b w n d -> b (w n) d')
        if autopad: out = out[:, :orig_seq_len, :]
        out, *_ = unpack(out, packed_shape, '* n d')
        return out
    
class SinusoidalEmbeddings(nn.Module):
    def __init__(self, dim, scale_base = None, use_xpos = False, theta = 10000):
        super().__init__()
        inv_freq = 1. / (theta ** (torch.arange(0, dim, 2).float() / dim))
        self.register_buffer('inv_freq', inv_freq)
        self.use_xpos = use_xpos
        self.scale_base = scale_base
        assert not (use_xpos and not exists(scale_base))
        scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim)
        self.register_buffer('scale', scale, persistent = False)

    def forward(self, x):
        seq_len, device = x.shape[-2], x.device
        t = torch.arange(seq_len, device = x.device).type_as(self.inv_freq)
        freqs = torch.einsum('i , j -> i j', t, self.inv_freq)
        freqs =  torch.cat((freqs, freqs), dim = -1)

        if not self.use_xpos: return freqs, torch.ones(1, device = device)

        power = (t - (seq_len // 2)) / self.scale_base
        scale = self.scale ** rearrange(power, 'n -> n 1')
        return freqs, torch.cat((scale, scale), dim = -1)

def load_wav_to_torch(full_path, target_sr=None, return_empty_on_exception=False):
    try:
        data, sample_rate = sf.read(full_path, always_2d=True)
    except Exception as e:
        print(f"{full_path}: {e}")

        if return_empty_on_exception: return [], sample_rate or target_sr or 48000
        else: raise

    data = data[:, 0] if len(data.shape) > 1 else data
    assert len(data) > 2

    max_mag = (-np.iinfo(data.dtype).min if np.issubdtype(data.dtype, np.integer) else max(np.amax(data), -np.amin(data)))
    data = torch.FloatTensor(data.astype(np.float32)) / ((2**31) + 1 if max_mag > (2**15) else ((2**15) + 1 if max_mag > 1.01 else 1.0))

    if (torch.isinf(data) | torch.isnan(data)).any() and return_empty_on_exception: return [], sample_rate or target_sr or 48000

    if target_sr is not None and sample_rate != target_sr:
        data = torch.from_numpy(librosa.core.resample(data.numpy(), orig_sr=sample_rate, target_sr=target_sr))
        sample_rate = target_sr

    return data, sample_rate

def dynamic_range_compression(x, C=1, clip_val=1e-5):
    return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)

def dynamic_range_decompression(x, C=1):
    return np.exp(x) / C

def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
    return torch.log(torch.clamp(x, min=clip_val) * C)

def dynamic_range_decompression_torch(x, C=1):
    return torch.exp(x) / C

class STFT:
    def __init__(self, sr=22050, n_mels=80, n_fft=1024, win_size=1024, hop_length=256, fmin=20, fmax=11025, clip_val=1e-5):
        self.target_sr = sr
        self.n_mels = n_mels
        self.n_fft = n_fft
        self.win_size = win_size
        self.hop_length = hop_length
        self.fmin = fmin
        self.fmax = fmax
        self.clip_val = clip_val
        self.mel_basis = {}
        self.hann_window = {}

    def get_mel(self, y, keyshift=0, speed=1, center=False, train=False):
        n_fft = self.n_fft
        win_size = self.win_size
        hop_length = self.hop_length
        fmax = self.fmax
        factor = 2 ** (keyshift / 12)
        win_size_new = int(np.round(win_size * factor))
        hop_length_new = int(np.round(hop_length * speed))
        mel_basis = self.mel_basis if not train else {}
        hann_window = self.hann_window if not train else {}
        mel_basis_key = str(fmax) + "_" + str(y.device)

        if mel_basis_key not in mel_basis:
            from librosa.filters import mel as librosa_mel_fn
            mel_basis[mel_basis_key] = torch.from_numpy(librosa_mel_fn(sr=self.target_sr, n_fft=n_fft, n_mels=self.n_mels, fmin=self.fmin, fmax=fmax)).float().to(y.device)

        keyshift_key = str(keyshift) + "_" + str(y.device)
        if keyshift_key not in hann_window: hann_window[keyshift_key] = torch.hann_window(win_size_new).to(y.device)

        pad_left = (win_size_new - hop_length_new) // 2
        pad_right = max((win_size_new - hop_length_new + 1) // 2, win_size_new - y.size(-1) - pad_left)
        spec = torch.stft(torch.nn.functional.pad(y.unsqueeze(1), (pad_left, pad_right), mode="reflect" if pad_right < y.size(-1) else "constant").squeeze(1), int(np.round(n_fft * factor)), hop_length=hop_length_new, win_length=win_size_new, window=hann_window[keyshift_key], center=center, pad_mode="reflect", normalized=False, onesided=True, return_complex=True)
        spec = torch.sqrt(spec.real.pow(2) + spec.imag.pow(2) + (1e-9))

        if keyshift != 0:
            size = n_fft // 2 + 1
            resize = spec.size(1)
            spec = (F.pad(spec, (0, 0, 0, size - resize)) if resize < size else spec[:, :size, :]) * win_size / win_size_new

        return dynamic_range_compression_torch(torch.matmul(mel_basis[mel_basis_key], spec), clip_val=self.clip_val)

    def __call__(self, audiopath):
        audio, _ = load_wav_to_torch(audiopath, target_sr=self.target_sr)
        return self.get_mel(audio.unsqueeze(0)).squeeze(0)

stft = STFT()

def softmax_kernel(data, *, projection_matrix, is_query, normalize_data=True, eps=1e-4, device=None):
    b, h, *_ = data.shape
    
    data_normalizer = (data.shape[-1] ** -0.25) if normalize_data else 1.0
    ratio = projection_matrix.shape[0] ** -0.5

    data_dash = torch.einsum("...id,...jd->...ij", (data_normalizer * data), repeat(projection_matrix, "j d -> b h j d", b=b, h=h).type_as(data))
    diag_data = ((torch.sum(data**2, dim=-1) / 2.0) * (data_normalizer**2)).unsqueeze(dim=-1)

    return (ratio * (torch.exp(data_dash - diag_data - torch.max(data_dash, dim=-1, keepdim=True).values) + eps) if is_query else ratio * (torch.exp(data_dash - diag_data + eps))).type_as(data)

def orthogonal_matrix_chunk(cols, qr_uniform_q=False, device=None):
    unstructured_block = torch.randn((cols, cols), device=device)

    q, r = torch.linalg.qr(unstructured_block.cpu(), mode="reduced")
    q, r = map(lambda t: t.to(device), (q, r))

    if qr_uniform_q:
        d = torch.diag(r, 0)
        q *= d.sign()

    return q.t()

def empty(tensor):
    return tensor.numel() == 0

def cast_tuple(val):
    return (val,) if not isinstance(val, tuple) else val

class PCmer(nn.Module):
    def __init__(self, num_layers, num_heads, dim_model, dim_keys, dim_values, residual_dropout, attention_dropout):
        super().__init__()
        self.num_layers = num_layers
        self.num_heads = num_heads
        self.dim_model = dim_model
        self.dim_values = dim_values
        self.dim_keys = dim_keys
        self.residual_dropout = residual_dropout
        self.attention_dropout = attention_dropout
        self._layers = nn.ModuleList([_EncoderLayer(self) for _ in range(num_layers)])

    def forward(self, phone, mask=None):
        for layer in self._layers:
            phone = layer(phone, mask)

        return phone

class _EncoderLayer(nn.Module):
    def __init__(self, parent: PCmer):
        super().__init__()
        self.conformer = ConformerConvModule(parent.dim_model)
        self.norm = nn.LayerNorm(parent.dim_model)
        self.dropout = nn.Dropout(parent.residual_dropout)
        self.attn = SelfAttention(dim=parent.dim_model, heads=parent.num_heads, causal=False)

    def forward(self, phone, mask=None):
        phone = phone + (self.attn(self.norm(phone), mask=mask))
        return phone + (self.conformer(phone))

def calc_same_padding(kernel_size):
    pad = kernel_size // 2
    return (pad, pad - (kernel_size + 1) % 2)

class Swish(nn.Module):
    def forward(self, x):
        return x * x.sigmoid()

class Transpose(nn.Module):
    def __init__(self, dims):
        super().__init__()
        assert len(dims) == 2, "dims == 2"

        self.dims = dims

    def forward(self, x):
        return x.transpose(*self.dims)

class GLU(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.dim = dim

    def forward(self, x):
        out, gate = x.chunk(2, dim=self.dim)
        return out * gate.sigmoid()

class DepthWiseConv1d(nn.Module):
    def __init__(self, chan_in, chan_out, kernel_size, padding):
        super().__init__()
        self.padding = padding
        self.conv = nn.Conv1d(chan_in, chan_out, kernel_size, groups=chan_in)

    def forward(self, x):
        return self.conv(F.pad(x, self.padding))

class ConformerConvModule(nn.Module):
    def __init__(self, dim, causal=False, expansion_factor=2, kernel_size=31, dropout=0.0):
        super().__init__()
        inner_dim = dim * expansion_factor
        self.net = nn.Sequential(nn.LayerNorm(dim), Transpose((1, 2)), nn.Conv1d(dim, inner_dim * 2, 1), GLU(dim=1), DepthWiseConv1d(inner_dim, inner_dim, kernel_size=kernel_size, padding=(calc_same_padding(kernel_size) if not causal else (kernel_size - 1, 0))), Swish(), nn.Conv1d(inner_dim, dim, 1), Transpose((1, 2)), nn.Dropout(dropout))

    def forward(self, x):
        return self.net(x)

def linear_attention(q, k, v):
    return torch.einsum("...ed,...nd->...ne", k, q) if v is None else torch.einsum("...de,...nd,...n->...ne", torch.einsum("...nd,...ne->...de", k, v), q, 1.0 / (torch.einsum("...nd,...d->...n", q, k.sum(dim=-2).type_as(q)) + 1e-8))

def gaussian_orthogonal_random_matrix(nb_rows, nb_columns, scaling=0, qr_uniform_q=False, device=None):
    nb_full_blocks = int(nb_rows / nb_columns)
    block_list = []

    for _ in range(nb_full_blocks):
        block_list.append(orthogonal_matrix_chunk(nb_columns, qr_uniform_q=qr_uniform_q, device=device))

    remaining_rows = nb_rows - nb_full_blocks * nb_columns
    if remaining_rows > 0: block_list.append(orthogonal_matrix_chunk(nb_columns, qr_uniform_q=qr_uniform_q, device=device)[:remaining_rows])

    if scaling == 0: multiplier = torch.randn((nb_rows, nb_columns), device=device).norm(dim=1)
    elif scaling == 1: multiplier = math.sqrt((float(nb_columns))) * torch.ones((nb_rows,), device=device)
    else: raise ValueError(f"{scaling} != 0, 1")

    return torch.diag(multiplier) @ torch.cat(block_list)

class FastAttention(nn.Module):
    def __init__(self, dim_heads, nb_features=None, ortho_scaling=0, causal=False, generalized_attention=False, kernel_fn=nn.ReLU(), qr_uniform_q=False, no_projection=False):
        super().__init__()
        nb_features = default(nb_features, int(dim_heads * math.log(dim_heads)))
        self.dim_heads = dim_heads
        self.nb_features = nb_features
        self.ortho_scaling = ortho_scaling
        self.create_projection = partial(gaussian_orthogonal_random_matrix, nb_rows=self.nb_features, nb_columns=dim_heads, scaling=ortho_scaling, qr_uniform_q=qr_uniform_q)
        projection_matrix = self.create_projection()
        self.register_buffer("projection_matrix", projection_matrix)
        self.generalized_attention = generalized_attention
        self.kernel_fn = kernel_fn
        self.no_projection = no_projection
        self.causal = causal

    @torch.no_grad()
    def redraw_projection_matrix(self):
        projections = self.create_projection()
        self.projection_matrix.copy_(projections)

        del projections

    def forward(self, q, k, v):
        if self.no_projection: q, k = q.softmax(dim=-1), (torch.exp(k) if self.causal else k.softmax(dim=-2)) 
        else:
            create_kernel = partial(softmax_kernel, projection_matrix=self.projection_matrix, device=q.device)
            q, k = create_kernel(q, is_query=True), create_kernel(k, is_query=False)

        attn_fn = linear_attention if not self.causal else self.causal_linear_fn
        return attn_fn(q, k, None) if v is None else attn_fn(q, k, v)

class SelfAttention(nn.Module):
    def __init__(self, dim, causal=False, heads=8, dim_head=64, local_heads=0, local_window_size=256, nb_features=None, feature_redraw_interval=1000, generalized_attention=False, kernel_fn=nn.ReLU(), qr_uniform_q=False, dropout=0.0, no_projection=False):
        super().__init__()
        assert dim % heads == 0
        dim_head = default(dim_head, dim // heads)
        inner_dim = dim_head * heads
        self.fast_attention = FastAttention(dim_head, nb_features, causal=causal, generalized_attention=generalized_attention, kernel_fn=kernel_fn, qr_uniform_q=qr_uniform_q, no_projection=no_projection)
        self.heads = heads
        self.global_heads = heads - local_heads
        self.local_attn = (LocalAttention(window_size=local_window_size, causal=causal, autopad=True, dropout=dropout, look_forward=int(not causal), rel_pos_emb_config=(dim_head, local_heads)) if local_heads > 0 else None)
        self.to_q = nn.Linear(dim, inner_dim)
        self.to_k = nn.Linear(dim, inner_dim)
        self.to_v = nn.Linear(dim, inner_dim)
        self.to_out = nn.Linear(inner_dim, dim)
        self.dropout = nn.Dropout(dropout)

    @torch.no_grad()
    def redraw_projection_matrix(self):
        self.fast_attention.redraw_projection_matrix()

    def forward(self, x, context=None, mask=None, context_mask=None, name=None, inference=False, **kwargs):
        _, _, _, h, gh = *x.shape, self.heads, self.global_heads
        cross_attend = exists(context)

        context = default(context, x)
        context_mask = default(context_mask, mask) if not cross_attend else context_mask

        q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), (self.to_q(x), self.to_k(context), self.to_v(context)))
        (q, lq), (k, lk), (v, lv) = map(lambda t: (t[:, :gh], t[:, gh:]), (q, k, v))

        attn_outs = []

        if not empty(q):
            if exists(context_mask): v.masked_fill_(~context_mask[:, None, :, None], 0.0)

            if cross_attend: pass  
            else: out = self.fast_attention(q, k, v)

            attn_outs.append(out)

        if not empty(lq):
            assert (not cross_attend), "not cross_attend"

            out = self.local_attn(lq, lk, lv, input_mask=mask)
            attn_outs.append(out)

        return self.dropout(self.to_out(rearrange(torch.cat(attn_outs, dim=1), "b h n d -> b n (h d)")))

def l2_regularization(model, l2_alpha):
    l2_loss = []

    for module in model.modules():
        if type(module) is nn.Conv2d: l2_loss.append((module.weight**2).sum() / 2.0)

    return l2_alpha * sum(l2_loss)

class _FCPE(nn.Module):
    def __init__(self, input_channel=128, out_dims=360, n_layers=12, n_chans=512, use_siren=False, use_full=False, loss_mse_scale=10, loss_l2_regularization=False, loss_l2_regularization_scale=1, loss_grad1_mse=False, loss_grad1_mse_scale=1, f0_max=1975.5, f0_min=32.70, confidence=False, threshold=0.05, use_input_conv=True):
        super().__init__()
        if use_siren: raise ValueError("Siren not support")
        if use_full: raise ValueError("Model full not support")
        self.loss_mse_scale = loss_mse_scale if (loss_mse_scale is not None) else 10
        self.loss_l2_regularization = (loss_l2_regularization if (loss_l2_regularization is not None) else False)
        self.loss_l2_regularization_scale = (loss_l2_regularization_scale if (loss_l2_regularization_scale is not None) else 1)
        self.loss_grad1_mse = loss_grad1_mse if (loss_grad1_mse is not None) else False
        self.loss_grad1_mse_scale = (loss_grad1_mse_scale if (loss_grad1_mse_scale is not None) else 1)
        self.f0_max = f0_max if (f0_max is not None) else 1975.5
        self.f0_min = f0_min if (f0_min is not None) else 32.70
        self.confidence = confidence if (confidence is not None) else False
        self.threshold = threshold if (threshold is not None) else 0.05
        self.use_input_conv = use_input_conv if (use_input_conv is not None) else True
        self.cent_table_b = torch.Tensor(np.linspace(self.f0_to_cent(torch.Tensor([f0_min]))[0], self.f0_to_cent(torch.Tensor([f0_max]))[0], out_dims))
        self.register_buffer("cent_table", self.cent_table_b)
        _leaky = nn.LeakyReLU()
        self.stack = nn.Sequential(nn.Conv1d(input_channel, n_chans, 3, 1, 1), nn.GroupNorm(4, n_chans), _leaky, nn.Conv1d(n_chans, n_chans, 3, 1, 1))
        self.decoder = PCmer(num_layers=n_layers, num_heads=8, dim_model=n_chans, dim_keys=n_chans, dim_values=n_chans, residual_dropout=0.1, attention_dropout=0.1)
        self.norm = nn.LayerNorm(n_chans)
        self.n_out = out_dims
        self.dense_out = weight_norm(nn.Linear(n_chans, self.n_out))

    def forward(self, mel, infer=True, gt_f0=None, return_hz_f0=False, cdecoder="local_argmax"):
        if cdecoder == "argmax": self.cdecoder = self.cents_decoder
        elif cdecoder == "local_argmax": self.cdecoder = self.cents_local_decoder

        x = torch.sigmoid(self.dense_out(self.norm(self.decoder((self.stack(mel.transpose(1, 2)).transpose(1, 2) if self.use_input_conv else mel)))))

        if not infer:
            loss_all = self.loss_mse_scale * F.binary_cross_entropy(x, self.gaussian_blurred_cent(self.f0_to_cent(gt_f0)))
            if self.loss_l2_regularization: loss_all = loss_all + l2_regularization(model=self, l2_alpha=self.loss_l2_regularization_scale)
            x = loss_all

        if infer:
            x = self.cent_to_f0(self.cdecoder(x))
            x = (1 + x / 700).log() if not return_hz_f0 else x

        return x

    def cents_decoder(self, y, mask=True):
        B, N, _ = y.size()
        rtn = torch.sum(self.cent_table[None, None, :].expand(B, N, -1) * y, dim=-1, keepdim=True) / torch.sum(y, dim=-1, keepdim=True)

        if mask:
            confident = torch.max(y, dim=-1, keepdim=True)[0]
            confident_mask = torch.ones_like(confident)

            confident_mask[confident <= self.threshold] = float("-INF")
            rtn = rtn * confident_mask

        return (rtn, confident) if self.confidence else rtn

    def cents_local_decoder(self, y, mask=True):
        B, N, _ = y.size()

        confident, max_index = torch.max(y, dim=-1, keepdim=True)
        local_argmax_index = torch.clamp(torch.arange(0, 9).to(max_index.device) + (max_index - 4), 0, self.n_out - 1)

        y_l = torch.gather(y, -1, local_argmax_index)
        rtn = torch.sum(torch.gather(self.cent_table[None, None, :].expand(B, N, -1), -1, local_argmax_index) * y_l, dim=-1, keepdim=True) / torch.sum(y_l, dim=-1, keepdim=True)

        if mask:
            confident_mask = torch.ones_like(confident)
            confident_mask[confident <= self.threshold] = float("-INF")

            rtn = rtn * confident_mask

        return (rtn, confident) if self.confidence else rtn

    def cent_to_f0(self, cent):
        return 10.0 * 2 ** (cent / 1200.0)

    def f0_to_cent(self, f0):
        return 1200.0 * torch.log2(f0 / 10.0)

    def gaussian_blurred_cent(self, cents):
        B, N, _ = cents.size()
        return torch.exp(-torch.square(self.cent_table[None, None, :].expand(B, N, -1) - cents) / 1250) * (cents > 0.1) & (cents < (1200.0 * np.log2(self.f0_max / 10.0))).float()

class FCPEInfer:
    def __init__(self, model_path, device=None, dtype=torch.float32, providers=None, onnx=False):
        if device is None: device = "cuda" if torch.cuda.is_available() else "cpu"
        self.wav2mel = Wav2Mel(device=device, dtype=dtype)
        self.device = device
        self.dtype = dtype
        self.onnx = onnx

        if self.onnx:
            import onnxruntime as ort

            sess_options = ort.SessionOptions()
            sess_options.log_severity_level = 3

            self.model = ort.InferenceSession(model_path, sess_options=sess_options, providers=providers)
        else:
            ckpt = torch.load(model_path, map_location=torch.device(self.device))
            self.args = DotDict(ckpt["config"])
            model = _FCPE(input_channel=self.args.model.input_channel, out_dims=self.args.model.out_dims, n_layers=self.args.model.n_layers, n_chans=self.args.model.n_chans, use_siren=self.args.model.use_siren, use_full=self.args.model.use_full, loss_mse_scale=self.args.loss.loss_mse_scale, loss_l2_regularization=self.args.loss.loss_l2_regularization, loss_l2_regularization_scale=self.args.loss.loss_l2_regularization_scale, loss_grad1_mse=self.args.loss.loss_grad1_mse, loss_grad1_mse_scale=self.args.loss.loss_grad1_mse_scale, f0_max=self.args.model.f0_max, f0_min=self.args.model.f0_min, confidence=self.args.model.confidence)

            model.to(self.device).to(self.dtype)
            model.load_state_dict(ckpt["model"])

            model.eval()
            self.model = model

    @torch.no_grad()
    def __call__(self, audio, sr, threshold=0.05):
        if not self.onnx: self.model.threshold = threshold
        mel = self.wav2mel(audio=audio[None, :], sample_rate=sr).to(self.dtype)

        return torch.as_tensor(self.model.run(["pitchf"], {"mel": mel.detach().cpu().numpy(), "threshold": np.array(threshold, dtype=np.float32)})[0], dtype=self.dtype, device=self.device).squeeze() if self.onnx else self.model(mel=mel, infer=True, return_hz_f0=True)

class Wav2Mel:
    def __init__(self, device=None, dtype=torch.float32):
        self.sample_rate = 16000
        self.hop_size = 160
        if device is None: device = "cuda" if torch.cuda.is_available() else "cpu"
        self.device = device
        self.dtype = dtype
        self.stft = STFT(16000, 128, 1024, 1024, 160, 0, 8000)
        self.resample_kernel = {}

    def extract_nvstft(self, audio, keyshift=0, train=False):
        return self.stft.get_mel(audio, keyshift=keyshift, train=train).transpose(1, 2)

    def extract_mel(self, audio, sample_rate, keyshift=0, train=False):
        audio = audio.to(self.dtype).to(self.device)

        if sample_rate == self.sample_rate: audio_res = audio
        else:
            key_str = str(sample_rate)

            if key_str not in self.resample_kernel: 
                from torchaudio.transforms import Resample
                self.resample_kernel[key_str] = Resample(sample_rate, self.sample_rate, lowpass_filter_width=128)

            self.resample_kernel[key_str] = (self.resample_kernel[key_str].to(self.dtype).to(self.device))
            audio_res = self.resample_kernel[key_str](audio)

        mel = self.extract_nvstft(audio_res, keyshift=keyshift, train=train) 
        n_frames = int(audio.shape[1] // self.hop_size) + 1
        mel = (torch.cat((mel, mel[:, -1:, :]), 1) if n_frames > int(mel.shape[1]) else mel)

        return mel[:, :n_frames, :] if n_frames < int(mel.shape[1]) else mel

    def __call__(self, audio, sample_rate, keyshift=0, train=False):
        return self.extract_mel(audio, sample_rate, keyshift=keyshift, train=train)

class DotDict(dict):
    def __getattr__(*args):
        val = dict.get(*args)
        return DotDict(val) if type(val) is dict else val

    __setattr__ = dict.__setitem__
    __delattr__ = dict.__delitem__

class FCPE:
    def __init__(self, model_path, hop_length=512, f0_min=50, f0_max=1100, dtype=torch.float32, device=None, sample_rate=44100, threshold=0.05, providers=None, onnx=False):
        self.fcpe = FCPEInfer(model_path, device=device, dtype=dtype, providers=providers, onnx=onnx)
        self.hop_length = hop_length
        self.f0_min = f0_min
        self.f0_max = f0_max
        self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
        self.threshold = threshold
        self.sample_rate = sample_rate
        self.dtype = dtype
        self.name = "fcpe"

    def repeat_expand(self, content, target_len, mode = "nearest"):
        ndim = content.ndim
        content = (content[None, None] if ndim == 1 else content[None] if ndim == 2 else content)

        assert content.ndim == 3
        is_np = isinstance(content, np.ndarray)

        results = torch.nn.functional.interpolate(torch.from_numpy(content) if is_np else content, size=target_len, mode=mode)
        results = results.numpy() if is_np else results
        return results[0, 0] if ndim == 1 else results[0] if ndim == 2 else results

    def post_process(self, x, sample_rate, f0, pad_to):
        f0 = (torch.from_numpy(f0).float().to(x.device) if isinstance(f0, np.ndarray) else f0)
        f0 = self.repeat_expand(f0, pad_to) if pad_to is not None else f0

        vuv_vector = torch.zeros_like(f0)
        vuv_vector[f0 > 0.0] = 1.0
        vuv_vector[f0 <= 0.0] = 0.0

        nzindex = torch.nonzero(f0).squeeze()
        f0 = torch.index_select(f0, dim=0, index=nzindex).cpu().numpy()
        vuv_vector = F.interpolate(vuv_vector[None, None, :], size=pad_to)[0][0]

        if f0.shape[0] <= 0: return np.zeros(pad_to), vuv_vector.cpu().numpy()
        if f0.shape[0] == 1: return np.ones(pad_to) * f0[0], vuv_vector.cpu().numpy()
        
        return np.interp(np.arange(pad_to) * self.hop_length / sample_rate, self.hop_length / sample_rate * nzindex.cpu().numpy(), f0, left=f0[0], right=f0[-1]), vuv_vector.cpu().numpy()

    def compute_f0(self, wav, p_len=None):
        x = torch.FloatTensor(wav).to(self.dtype).to(self.device)
        p_len = x.shape[0] // self.hop_length if p_len is None else p_len

        f0 = self.fcpe(x, sr=self.sample_rate, threshold=self.threshold)
        f0 = f0[:] if f0.dim() == 1 else f0[0, :, 0]

        if torch.all(f0 == 0): return f0.cpu().numpy() if p_len is None else np.zeros(p_len), (f0.cpu().numpy() if p_len is None else np.zeros(p_len))
        return self.post_process(x, self.sample_rate, f0, p_len)[0]