File size: 10,383 Bytes
e0202f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import os
import torch
import librosa
import functools
import scipy.stats

import numpy as np

CENTS_PER_BIN, MAX_FMAX, PITCH_BINS, SAMPLE_RATE, WINDOW_SIZE = 20, 2006, 360, 16000, 1024  

class Crepe(torch.nn.Module):
    def __init__(self, model='full'):
        super().__init__()
        if model == 'full':
            in_channels = [1, 1024, 128, 128, 128, 256]
            out_channels = [1024, 128, 128, 128, 256, 512]
            self.in_features = 2048
        elif model == 'large':
            in_channels = [1, 768, 96, 96, 96, 192]
            out_channels = [768, 96, 96, 96, 192, 384]
            self.in_features = 1536
        elif model == 'medium':
            in_channels = [1, 512, 64, 64, 64, 128]
            out_channels = [512, 64, 64, 64, 128, 256]
            self.in_features = 1024
        elif model == 'small':
            in_channels = [1, 256, 32, 32, 32, 64]
            out_channels = [256, 32, 32, 32, 64, 128]
            self.in_features = 512
        elif model == 'tiny':
            in_channels = [1, 128, 16, 16, 16, 32]
            out_channels = [128, 16, 16, 16, 32, 64]
            self.in_features = 256

        kernel_sizes = [(512, 1)] + 5 * [(64, 1)]
        strides = [(4, 1)] + 5 * [(1, 1)]

        batch_norm_fn = functools.partial(torch.nn.BatchNorm2d, eps=0.0010000000474974513, momentum=0.0)

        self.conv1 = torch.nn.Conv2d(in_channels=in_channels[0], out_channels=out_channels[0], kernel_size=kernel_sizes[0], stride=strides[0])
        self.conv1_BN = batch_norm_fn(num_features=out_channels[0])
        self.conv2 = torch.nn.Conv2d(in_channels=in_channels[1], out_channels=out_channels[1], kernel_size=kernel_sizes[1], stride=strides[1])
        self.conv2_BN = batch_norm_fn(num_features=out_channels[1])

        self.conv3 = torch.nn.Conv2d(in_channels=in_channels[2], out_channels=out_channels[2], kernel_size=kernel_sizes[2], stride=strides[2])
        self.conv3_BN = batch_norm_fn(num_features=out_channels[2])
        self.conv4 = torch.nn.Conv2d(in_channels=in_channels[3], out_channels=out_channels[3], kernel_size=kernel_sizes[3], stride=strides[3])
        self.conv4_BN = batch_norm_fn(num_features=out_channels[3])

        self.conv5 = torch.nn.Conv2d(in_channels=in_channels[4], out_channels=out_channels[4], kernel_size=kernel_sizes[4], stride=strides[4])
        self.conv5_BN = batch_norm_fn(num_features=out_channels[4])
        self.conv6 = torch.nn.Conv2d(in_channels=in_channels[5], out_channels=out_channels[5], kernel_size=kernel_sizes[5], stride=strides[5])
        self.conv6_BN = batch_norm_fn(num_features=out_channels[5])

        self.classifier = torch.nn.Linear(in_features=self.in_features, out_features=PITCH_BINS)

    def forward(self, x, embed=False):
        x = self.embed(x)
        if embed: return x

        return torch.sigmoid(self.classifier(self.layer(x, self.conv6, self.conv6_BN).permute(0, 2, 1, 3).reshape(-1, self.in_features)))

    def embed(self, x):
        x = x[:, None, :, None]

        return self.layer(self.layer(self.layer(self.layer(self.layer(x, self.conv1, self.conv1_BN, (0, 0, 254, 254)), self.conv2, self.conv2_BN), self.conv3, self.conv3_BN), self.conv4, self.conv4_BN), self.conv5, self.conv5_BN)

    def layer(self, x, conv, batch_norm, padding=(0, 0, 31, 32)):
        return torch.nn.functional.max_pool2d(batch_norm(torch.nn.functional.relu(conv(torch.nn.functional.pad(x, padding)))), (2, 1), (2, 1))

def viterbi(logits):
    if not hasattr(viterbi, 'transition'):
        xx, yy = np.meshgrid(range(360), range(360))
        transition = np.maximum(12 - abs(xx - yy), 0)
        viterbi.transition = transition / transition.sum(axis=1, keepdims=True)

    with torch.no_grad():
        probs = torch.nn.functional.softmax(logits, dim=1)

    bins = torch.tensor(np.array([librosa.sequence.viterbi(sequence, viterbi.transition).astype(np.int64) for sequence in probs.cpu().numpy()]), device=probs.device)
    return bins, bins_to_frequency(bins)

def predict(audio, sample_rate, hop_length=None, fmin=50, fmax=MAX_FMAX, model='full', return_periodicity=False, batch_size=None, device='cpu', pad=True, providers=None, onnx=False):
    results = []

    if onnx:
        import onnxruntime as ort

        sess_options = ort.SessionOptions()
        sess_options.log_severity_level = 3

        session = ort.InferenceSession(os.path.join("assets", "models", "predictors", f"crepe_{model}.onnx"), sess_options=sess_options, providers=providers)

        for frames in preprocess(audio, sample_rate, hop_length, batch_size, device, pad):
            result = postprocess(torch.tensor(session.run([session.get_outputs()[0].name], {session.get_inputs()[0].name: frames.cpu().numpy()})[0].transpose(1, 0)[None]), fmin, fmax, return_periodicity)
            results.append((result[0], result[1]) if isinstance(result, tuple) else result)

        del session

        if return_periodicity:
            pitch, periodicity = zip(*results)
            return torch.cat(pitch, 1), torch.cat(periodicity, 1)

        return torch.cat(results, 1)
    else:
        with torch.no_grad():
            for frames in preprocess(audio, sample_rate, hop_length, batch_size, device, pad):
                result = postprocess(infer(frames, model, device, embed=False).reshape(audio.size(0), -1, PITCH_BINS).transpose(1, 2), fmin, fmax, return_periodicity)
                results.append((result[0].to(audio.device), result[1].to(audio.device)) if isinstance(result, tuple) else result.to(audio.device))

        if return_periodicity:
            pitch, periodicity = zip(*results)
            return torch.cat(pitch, 1), torch.cat(periodicity, 1)
        
        return torch.cat(results, 1)

def bins_to_frequency(bins):
    cents = CENTS_PER_BIN * bins + 1997.3794084376191
    return 10 * 2 ** ((cents + cents.new_tensor(scipy.stats.triang.rvs(c=0.5, loc=-CENTS_PER_BIN, scale=2 * CENTS_PER_BIN, size=cents.size()))) / 1200)

def frequency_to_bins(frequency, quantize_fn=torch.floor):
    return quantize_fn(((1200 * torch.log2(frequency / 10)) - 1997.3794084376191) / CENTS_PER_BIN).int()

def infer(frames, model='full', device='cpu', embed=False):
    if not hasattr(infer, 'model') or not hasattr(infer, 'capacity') or (hasattr(infer, 'capacity') and infer.capacity != model): load_model(device, model)
    infer.model = infer.model.to(device)

    return infer.model(frames, embed=embed)

def load_model(device, capacity='full'):
    infer.capacity = capacity
    infer.model = Crepe(capacity)
    infer.model.load_state_dict(torch.load(os.path.join("assets", "models", "predictors", f"crepe_{capacity}.pth"), map_location=device))
    infer.model = infer.model.to(torch.device(device))
    infer.model.eval()

def postprocess(probabilities, fmin=0, fmax=MAX_FMAX, return_periodicity=False):
    probabilities = probabilities.detach()

    probabilities[:, :frequency_to_bins(torch.tensor(fmin))] = -float('inf')
    probabilities[:, frequency_to_bins(torch.tensor(fmax), torch.ceil):] = -float('inf')

    bins, pitch = viterbi(probabilities)

    if not return_periodicity: return pitch
    return pitch, periodicity(probabilities, bins)

def preprocess(audio, sample_rate, hop_length=None, batch_size=None, device='cpu', pad=True):
    hop_length = sample_rate // 100 if hop_length is None else hop_length

    if sample_rate != SAMPLE_RATE:
        audio = torch.tensor(librosa.resample(audio.detach().cpu().numpy().squeeze(0), orig_sr=sample_rate, target_sr=SAMPLE_RATE, res_type="soxr_vhq"), device=audio.device).unsqueeze(0)
        hop_length = int(hop_length * SAMPLE_RATE / sample_rate)

    if pad:
        total_frames = 1 + int(audio.size(1) // hop_length)
        audio = torch.nn.functional.pad(audio, (WINDOW_SIZE // 2, WINDOW_SIZE // 2))
    else: total_frames = 1 + int((audio.size(1) - WINDOW_SIZE) // hop_length)

    batch_size = total_frames if batch_size is None else batch_size

    for i in range(0, total_frames, batch_size):
        frames = torch.nn.functional.unfold(audio[:, None, None, max(0, i * hop_length):min(audio.size(1), (i + batch_size - 1) * hop_length + WINDOW_SIZE)], kernel_size=(1, WINDOW_SIZE), stride=(1, hop_length))
        frames = frames.transpose(1, 2).reshape(-1, WINDOW_SIZE).to(device)
        frames -= frames.mean(dim=1, keepdim=True)
        frames /= torch.max(torch.tensor(1e-10, device=frames.device), frames.std(dim=1, keepdim=True))

        yield frames

def periodicity(probabilities, bins):
    probs_stacked = probabilities.transpose(1, 2).reshape(-1, PITCH_BINS)
    periodicity = probs_stacked.gather(1, bins.reshape(-1, 1).to(torch.int64))
    
    return periodicity.reshape(probabilities.size(0), probabilities.size(2))

def mean(signals, win_length=9):
    assert signals.dim() == 2

    signals = signals.unsqueeze(1)
    mask = ~torch.isnan(signals)
    padding = win_length // 2

    ones_kernel = torch.ones(signals.size(1), 1, win_length, device=signals.device)
    avg_pooled = torch.nn.functional.conv1d(torch.where(mask, signals, torch.zeros_like(signals)), ones_kernel, stride=1, padding=padding) / torch.nn.functional.conv1d(mask.float(), ones_kernel, stride=1, padding=padding).clamp(min=1) 
    avg_pooled[avg_pooled == 0] = float("nan")

    return avg_pooled.squeeze(1)

def median(signals, win_length):
    assert signals.dim() == 2

    signals = signals.unsqueeze(1)
    mask = ~torch.isnan(signals)
    padding = win_length // 2

    x = torch.nn.functional.pad(torch.where(mask, signals, torch.zeros_like(signals)), (padding, padding), mode="reflect")
    mask = torch.nn.functional.pad(mask.float(), (padding, padding), mode="constant", value=0)

    x = x.unfold(2, win_length, 1)
    mask = mask.unfold(2, win_length, 1)

    x = x.contiguous().view(x.size()[:3] + (-1,))
    mask = mask.contiguous().view(mask.size()[:3] + (-1,))

    x_sorted, _ = torch.sort(torch.where(mask.bool(), x.float(), float("inf")).to(x), dim=-1)

    median_pooled = x_sorted.gather(-1, ((mask.sum(dim=-1) - 1) // 2).clamp(min=0).unsqueeze(-1).long()).squeeze(-1)
    median_pooled[torch.isinf(median_pooled)] = float("nan")

    return median_pooled.squeeze(1)