File size: 13,754 Bytes
e4d8df5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
import math
import numba as nb
import numpy as np
from scipy import signal
from scipy.interpolate import interp1d
def dio(x, fs, f0_floor=50, f0_ceil=1100, channels_in_octave=2, target_fs=4000, frame_period=10, allowed_range=0.1):
temporal_positions = np.arange(0, int(1000 * len(x) / fs / frame_period + 1)) * frame_period / 1000
boundary_f0_list = f0_floor * (2.0 ** ((np.arange(math.ceil(np.log2(f0_ceil / f0_floor) * channels_in_octave)) + 1) / channels_in_octave))
y = decimate(x, int(fs / target_fs))
y_spectrum = get_spectrum(y, target_fs, f0_floor)
raw_f0_candidate, raw_stability = get_candidate_and_stability(np.size(temporal_positions), boundary_f0_list, np.size(y), temporal_positions, target_fs, y_spectrum, f0_floor, f0_ceil)
return np.array(fix_f0_contour(sort_candidates(raw_f0_candidate, raw_stability), frame_period, f0_floor, allowed_range), dtype=np.float32), np.array(temporal_positions, dtype=np.float32)
def get_downsampled_signal(x, fs, target_fs):
decimation_ratio = int(fs / target_fs + 0.5)
if fs < target_fs:
y = np.empty_like(x)
y[:] = x
actual_fs = fs
else:
y = decimate_matlab(x, decimation_ratio, n = 3)
actual_fs = fs / decimation_ratio
y -= np.mean(y)
return y, actual_fs
def get_spectrum(x, fs, lowest_f0):
fft_size = 2 ** math.ceil(math.log(np.size(x) + int(fs / lowest_f0 / 2 + 0.5) * 4,2))
cutoff_in_sample = int(fs / 50 + 0.5)
low_cut_filter = signal.windows.hann(2 * cutoff_in_sample + 3)[1:-1]
low_cut_filter = -low_cut_filter / np.sum(low_cut_filter)
low_cut_filter[cutoff_in_sample] = low_cut_filter[cutoff_in_sample] + 1
low_cut_filter = np.r_[low_cut_filter, np.zeros(fft_size - len(low_cut_filter))]
low_cut_filter = np.r_[low_cut_filter[cutoff_in_sample:], low_cut_filter[:cutoff_in_sample]]
return np.fft.fft(x, fft_size) * np.fft.fft(low_cut_filter, fft_size)
def get_candidate_and_stability(number_of_frames, boundary_f0_list, y_length, temporal_positions, actual_fs, y_spectrum, f0_floor, f0_ceil):
raw_f0_candidate = np.zeros((np.size(boundary_f0_list), number_of_frames))
raw_f0_stability = np.zeros((np.size(boundary_f0_list), number_of_frames))
for i in range(np.size(boundary_f0_list)):
interpolated_f0, f0_deviations = get_raw_event(boundary_f0_list[i], actual_fs, y_spectrum, y_length, temporal_positions, f0_floor, f0_ceil)
raw_f0_stability[i, :] = np.exp(-(f0_deviations / np.maximum(interpolated_f0, 0.0000001)))
raw_f0_candidate[i, :] = interpolated_f0
return raw_f0_candidate, raw_f0_stability
def sort_candidates(f0_candidate_map, stability_map):
number_of_candidates, number_of_frames = f0_candidate_map.shape
sorted_index = np.argsort(-stability_map, axis=0, kind='quicksort')
f0_candidates = np.zeros((number_of_candidates, number_of_frames))
for i in range(number_of_frames):
f0_candidates[:, i] = f0_candidate_map[sorted_index[:number_of_candidates,i], i]
return f0_candidates
def get_raw_event(boundary_f0, fs, y_spectrum, y_length, temporal_positions, f0_floor, f0_ceil):
low_pass_filter = nuttall(int(fs / boundary_f0 / 2 + 0.5) * 4)
filtered_signal = np.real(np.fft.ifft(np.fft.fft(low_pass_filter, len(y_spectrum)) * y_spectrum))
filtered_signal = filtered_signal[low_pass_filter.argmax() + np.arange(1, y_length + 1)]
neg_loc, neg_f0 = ZeroCrossingEngine(filtered_signal, fs)
pos_loc, pos_f0 = ZeroCrossingEngine(-filtered_signal, fs)
peak_loc, peak_f0 = ZeroCrossingEngine(np.diff(filtered_signal), fs)
dip_loc, dip_f0 = ZeroCrossingEngine(-np.diff(filtered_signal), fs)
f0_candidate, f0_deviations = get_f0_candidates(neg_loc, neg_f0, pos_loc, pos_f0, peak_loc, peak_f0, dip_loc, dip_f0, temporal_positions)
f0_candidate[f0_candidate > boundary_f0] = 0
f0_candidate[f0_candidate < (boundary_f0 / 2)] = 0
f0_candidate[f0_candidate > f0_ceil] = 0
f0_candidate[f0_candidate < f0_floor] = 0
f0_deviations[f0_candidate == 0] = 100000
return f0_candidate, f0_deviations
def get_f0_candidates(neg_loc, neg_f0, pos_loc, pos_f0, peak_loc, peak_f0, dip_loc, dip_f0, temporal_positions):
usable_channel = max(0, np.size(neg_loc) - 2) * max(0, np.size(pos_loc) - 2) * max(0, np.size(peak_loc) - 2) * max(0, np.size(dip_f0) - 2)
interpolated_f0_list = np.zeros((4, np.size(temporal_positions)))
if usable_channel > 0:
interpolated_f0_list[0, :] = interp1d(neg_loc, neg_f0, fill_value='extrapolate')(temporal_positions)
interpolated_f0_list[1, :] = interp1d(pos_loc, pos_f0, fill_value='extrapolate')(temporal_positions)
interpolated_f0_list[2, :] = interp1d(peak_loc, peak_f0, fill_value='extrapolate')(temporal_positions)
interpolated_f0_list[3, :] = interp1d(dip_loc, dip_f0, fill_value='extrapolate')(temporal_positions)
interpolated_f0 = np.mean(interpolated_f0_list, axis=0)
f0_deviations = np.std(interpolated_f0_list, axis=0, ddof=1)
else:
interpolated_f0 = temporal_positions * 0
f0_deviations = temporal_positions * 0 + 1000
return interpolated_f0, f0_deviations
@nb.jit((nb.float64[:], nb.float64), nopython=True, cache=True)
def ZeroCrossingEngine(x, fs):
y = np.empty_like(x)
y[:-1] = x[1:]
y[-1] = x[-1]
negative_going_points = np.arange(1, len(x) + 1) * ((y * x < 0) * (y < x))
edge_list = negative_going_points[negative_going_points > 0]
fine_edge_list = (edge_list) - x[edge_list - 1] / (x[edge_list] - x[edge_list - 1])
return (fine_edge_list[:len(fine_edge_list) - 1] + fine_edge_list[1:]) / 2 / fs, fs / np.diff(fine_edge_list)
def nuttall(N):
return np.squeeze(np.asarray(np.array([0.355768, -0.487396, 0.144232, -0.012604]) @ np.cos(np.matrix([0,1,2,3]).T @ np.asmatrix(np.arange(N) * 2 * math.pi / (N-1)))))
def fix_f0_contour(f0_candidates, frame_period, f0_floor, allowed_range):
voice_range_minimum =int(1 / (frame_period / 1000) / f0_floor + 0.5) * 2 + 1
f0_step2 = fix_step2(fix_step1(f0_candidates, voice_range_minimum, allowed_range), voice_range_minimum)
section_list = count_voiced_sections(f0_step2)
f0_step4 = fix_step4(fix_step3(f0_step2, f0_candidates, section_list, allowed_range), f0_candidates, section_list, allowed_range)
return np.copy(f0_step4)
def fix_step1(f0_candidates, voice_range_minimum, allowed_range):
f0_base = f0_candidates[0]
f0_base[ : voice_range_minimum] = 0
f0_base[-voice_range_minimum : ] = 0
f0_step1 = np.copy(f0_base)
rounding_f0_base = np.array([float("{0:.6f}".format(elm)) for elm in f0_base])
for i in np.arange(voice_range_minimum - 1, len(f0_base)):
if abs((rounding_f0_base[i] - rounding_f0_base[i-1]) / (0.000001 + rounding_f0_base[i])) > allowed_range: f0_step1[i] = 0
return f0_step1
def fix_step2(f0_step1, voice_range_minimum):
f0_step2 = np.copy(f0_step1)
for i in np.arange((voice_range_minimum - 1) / 2 , len(f0_step1) - (voice_range_minimum - 1) / 2).astype(int):
for j in np.arange( -(voice_range_minimum - 1) / 2 , (voice_range_minimum - 1) / 2 + 1).astype(int):
if f0_step1[i + j] == 0:
f0_step2[i] = 0
break
return f0_step2
def fix_step3(f0_step2, f0_candidates, section_list, allowed_range):
f0_step3 = np.empty_like(f0_step2)
f0_step3[:] = f0_step2
for i in np.arange(section_list.shape[0]):
limit = len(f0_step3) - 1 if i == section_list.shape[0] - 1 else section_list[i + 1, 0] + 1
for j in np.arange(section_list[i, 1], limit).astype(int):
f0_step3[j + 1] = select_best_f0(f0_step3[j], f0_step3[j - 1], f0_candidates[:, j + 1], allowed_range)
if f0_step3[j + 1] == 0: break
return f0_step3
def fix_step4(f0_step3, f0_candidates, section_list, allowed_range):
f0_step4 = np.copy(f0_step3)
for i in range(section_list.shape[0] - 1, -1 , -1):
limit = 1 if i == 0 else section_list[i - 1, 1]
for j in np.arange(section_list[i, 0], limit - 1, -1).astype(int):
f0_step4[j - 1] = select_best_f0(f0_step4[j], f0_step4[j + 1], f0_candidates[:, j - 1], allowed_range)
if f0_step4[j - 1] == 0: break
return f0_step4
def select_best_f0(current_f0, past_f0, candidates, allowed_range):
from sys import float_info
reference_f0 = (current_f0 * 3 - past_f0) / 2
minimum_error = abs(reference_f0 - candidates[0])
best_f0 = candidates[0]
for i in range(1, len(candidates)):
current_error = abs(reference_f0 - candidates[i])
if current_error < minimum_error:
minimum_error = current_error
best_f0 = candidates[i]
if abs(1 - best_f0 / (reference_f0 + float_info.epsilon)) > allowed_range: best_f0 = 0
return best_f0
def count_voiced_sections(f0):
vuv = np.copy(f0)
vuv[vuv != 0] = 1
diff_vuv = np.diff(vuv)
boundary_list = np.append(np.append([0], np.where(diff_vuv != 0)[0]), [len(vuv) - 2])
first_section = np.ceil(-0.5 * diff_vuv[boundary_list[1]])
number_of_voiced_sections = np.floor((len(boundary_list) - (1 - first_section)) / 2).astype(int)
voiced_section_list = np.zeros((number_of_voiced_sections, 2))
for i in range(number_of_voiced_sections):
voiced_section_list[i, :] = np.array([1 + boundary_list[int((i - 1) * 2 + 1 + (1 - first_section)) + 1], boundary_list[int((i * 2) + (1 - first_section)) + 1]])
return voiced_section_list
def decimate_matlab(x, q, n=None, axis=-1):
if not isinstance(q, int): raise TypeError
if n is not None and not isinstance(n, int): raise TypeError
system = signal.dlti(*signal.cheby1(n, 0.05, 0.8 / q))
y = signal.filtfilt(system.num, system.den, x, axis=axis, padlen=3 * (max(len(system.den), len(system.num)) - 1))
nd = len(y)
return y[int(q - (q * np.ceil(nd / q) - nd)) - 1::q]
def FilterForDecimate(x,r):
a, b = np.zeros(3), np.zeros(2)
if r==11:
a[0] = 2.450743295230728
a[1] = -2.06794904601978
a[2] = 0.59574774438332101
b[0] = 0.0026822508007163792
b[1] = 0.0080467524021491377
elif r==12:
a[0] = 2.4981398605924205
a[1] = -2.1368928194784025
a[2] = 0.62187513816221485
b[0] = 0.0021097275904709001
b[1] = 0.0063291827714127002
elif r==10:
a[0] = 2.3936475118069387
a[1] = -1.9873904075111861
a[2] = 0.5658879979027055
b[0] = 0.0034818622251927556
b[1] = 0.010445586675578267
elif r==9:
a[0] = 2.3236003491759578
a[1] = -1.8921545617463598
a[2] = 0.53148928133729068
b[0] = 0.0046331164041389372
b[1] = 0.013899349212416812
elif r==8:
a[0] = 2.2357462340187593
a[1] = -1.7780899984041358
a[2] = 0.49152555365968692
b[0] = 0.0063522763407111993
b[1] = 0.019056829022133598
elif r==7:
a[0] = 2.1225239019534703
a[1] = -1.6395144861046302
a[2] = 0.44469707800587366
b[0] = 0.0090366882681608418
b[1] = 0.027110064804482525
elif r==6:
a[0] = 1.9715352749512141
a[1] = -1.4686795689225347
a[2] = 0.3893908434965701
b[0] = 0.013469181309343825
b[1] = 0.040407543928031475
elif r==5:
a[0] = 1.7610939654280557
a[1] = -1.2554914843859768
a[2] = 0.3237186507788215
b[0] = 0.021334858522387423
b[1] = 0.06400457556716227
elif r==4:
a[0] = 1.4499664446880227
a[1] = -0.98943497080950582
a[2] = 0.24578252340690215
b[0] = 0.036710750339322612
b[1] = 0.11013225101796784
elif r==3:
a[0] = 0.95039378983237421
a[1] = -0.67429146741526791
a[2] = 0.15412211621346475
b[0] = 0.071221945171178636
b[1] = 0.21366583551353591
elif r==2:
a[0] = 0.041156734567757189
a[1] = -0.42599112459189636
a[2] = 0.041037215479961225
b[0] = 0.16797464681802227
b[1] = 0.50392394045406674
else: a[0] = a[1] = a[2] = b[0] = b[1] = 0.0
w = np.zeros(3)
y_prime = np.zeros_like(x)
for i in range(len(x)):
wt = x[i] + a[0] * w[0] + a[1] * w[1] + a[2] * w[2]
y_prime[i] = b[0] * wt + b[1] * w[0] + b[1] * w[1] + b[0] * w[2]
w[2] = w[1]
w[1] = w[0]
w[0] = wt
return y_prime
def decimate(x,r):
y = []
kNFact = 9
x_length = len(x)
tmp1 = np.zeros(x_length + kNFact * 2)
tmp2 = np.zeros(x_length + kNFact * 2)
for i in range(kNFact):
tmp1[i] = 2 * x[0] - x[kNFact - i]
for i in range(kNFact, kNFact + x_length):
tmp1[i] = x[i - kNFact]
for i in range(kNFact + x_length, 2 * kNFact + x_length):
tmp1[i] = 2 * x[-1] - x[x_length - 2 - (i - (kNFact + x_length))]
tmp2 = FilterForDecimate(tmp1, r)
for i in range(2 * kNFact + x_length):
tmp1[i] = tmp2[2 * kNFact + x_length - i - 1]
tmp2 = FilterForDecimate(tmp1, r)
for i in range(2 * kNFact + x_length):
tmp1[i] = tmp2[2 * kNFact + x_length - i - 1]
nbeg = int(r - r * np.ceil(x_length / r + 1) + x_length)
count = 0
for i in range(nbeg, x_length + kNFact, r):
y.append(tmp1[i + kNFact - 1])
count += 1
return np.array(y) |