File size: 8,026 Bytes
1e4a2ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import os
import sys
import time
import logging
import librosa
import argparse
import numpy as np
import torch.multiprocessing as mp
from tqdm import tqdm
from scipy import signal
from scipy.io import wavfile
from distutils.util import strtobool
from concurrent.futures import ProcessPoolExecutor, as_completed
sys.path.append(os.getcwd())
from main.library.utils import load_audio
from main.inference.preprocess.slicer2 import Slicer
from main.app.variables import config, logger, translations, configs
for l in ["numba.core.byteflow", "numba.core.ssa", "numba.core.interpreter"]:
logging.getLogger(l).setLevel(logging.ERROR)
OVERLAP, MAX_AMPLITUDE, ALPHA, HIGH_PASS_CUTOFF, SAMPLE_RATE_16K = 0.3, 0.9, 0.75, 48, 16000
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument("--preprocess", action='store_true')
parser.add_argument("--model_name", type=str, required=True)
parser.add_argument("--dataset_path", type=str, default="./dataset")
parser.add_argument("--sample_rate", type=int, required=True)
parser.add_argument("--cpu_cores", type=int, default=2)
parser.add_argument("--cut_preprocess", type=lambda x: bool(strtobool(x)), default=True)
parser.add_argument("--process_effects", type=lambda x: bool(strtobool(x)), default=False)
parser.add_argument("--clean_dataset", type=lambda x: bool(strtobool(x)), default=False)
parser.add_argument("--clean_strength", type=float, default=0.7)
return parser.parse_args()
class PreProcess:
def __init__(self, sr, exp_dir, per):
self.slicer = Slicer(sr=sr, threshold=-42, min_length=1500, min_interval=400, hop_size=15, max_sil_kept=500)
self.sr = sr
self.b_high, self.a_high = signal.butter(N=5, Wn=HIGH_PASS_CUTOFF, btype="high", fs=self.sr)
self.per = per
self.exp_dir = exp_dir
self.device = "cpu"
self.gt_wavs_dir = os.path.join(exp_dir, "sliced_audios")
self.wavs16k_dir = os.path.join(exp_dir, "sliced_audios_16k")
os.makedirs(self.gt_wavs_dir, exist_ok=True)
os.makedirs(self.wavs16k_dir, exist_ok=True)
def _normalize_audio(self, audio):
tmp_max = np.abs(audio).max()
if tmp_max > 2.5: return None
return (audio / tmp_max * (MAX_AMPLITUDE * ALPHA)) + (1 - ALPHA) * audio
def process_audio_segment(self, normalized_audio, sid, idx0, idx1):
if normalized_audio is None:
logger.debug(f"{sid}-{idx0}-{idx1}-filtered")
return
wavfile.write(os.path.join(self.gt_wavs_dir, f"{sid}_{idx0}_{idx1}.wav"), self.sr, normalized_audio.astype(np.float32))
wavfile.write(os.path.join(self.wavs16k_dir, f"{sid}_{idx0}_{idx1}.wav"), SAMPLE_RATE_16K, librosa.resample(normalized_audio, orig_sr=self.sr, target_sr=SAMPLE_RATE_16K, res_type="soxr_vhq").astype(np.float32))
def process_audio(self, path, idx0, sid, cut_preprocess, process_effects, clean_dataset, clean_strength):
try:
audio = load_audio(path, self.sr)
if process_effects:
audio = signal.lfilter(self.b_high, self.a_high, audio)
audio = self._normalize_audio(audio)
if clean_dataset:
from main.tools.noisereduce import reduce_noise
audio = reduce_noise(y=audio, sr=self.sr, prop_decrease=clean_strength, device=config.device)
idx1 = 0
if cut_preprocess:
for audio_segment in self.slicer.slice(audio):
i = 0
while 1:
start = int(self.sr * (self.per - OVERLAP) * i)
i += 1
if len(audio_segment[start:]) > (self.per + OVERLAP) * self.sr:
self.process_audio_segment(audio_segment[start : start + int(self.per * self.sr)], sid, idx0, idx1)
idx1 += 1
else:
self.process_audio_segment(audio_segment[start:], sid, idx0, idx1)
idx1 += 1
break
else: self.process_audio_segment(audio, sid, idx0, idx1)
except Exception as e:
raise RuntimeError(f"{translations['process_audio_error']}: {e}")
def process_file(args):
pp, file, cut_preprocess, process_effects, clean_dataset, clean_strength = (args)
file_path, idx0, sid = file
pp.process_audio(file_path, idx0, sid, cut_preprocess, process_effects, clean_dataset, clean_strength)
def preprocess_training_set(input_root, sr, num_processes, exp_dir, per, cut_preprocess, process_effects, clean_dataset, clean_strength):
start_time = time.time()
pp = PreProcess(sr, exp_dir, per)
logger.info(translations["start_preprocess"].format(num_processes=num_processes))
files = []
idx = 0
for root, _, filenames in os.walk(input_root):
try:
sid = 0 if root == input_root else int(os.path.basename(root))
for f in filenames:
if f.lower().endswith(("wav", "mp3", "flac", "ogg", "opus", "m4a", "mp4", "aac", "alac", "wma", "aiff", "webm", "ac3")):
files.append((os.path.join(root, f), idx, sid))
idx += 1
except ValueError:
raise ValueError(f"{translations['not_integer']} '{os.path.basename(root)}'.")
with tqdm(total=len(files), ncols=100, unit="f") as pbar:
with ProcessPoolExecutor(max_workers=num_processes) as executor:
futures = [executor.submit(process_file, (pp, file, cut_preprocess, process_effects, clean_dataset, clean_strength)) for file in files]
for future in as_completed(futures):
try:
future.result()
except Exception as e:
raise RuntimeError(f"{translations['process_error']}: {e}")
pbar.update(1)
elapsed_time = time.time() - start_time
logger.info(translations["preprocess_success"].format(elapsed_time=f"{elapsed_time:.2f}"))
def main():
args = parse_arguments()
experiment_directory = os.path.join(configs["logs_path"], args.model_name)
num_processes = args.cpu_cores
num_processes = 2 if num_processes is None else int(num_processes)
dataset, sample_rate, cut_preprocess, preprocess_effects, clean_dataset, clean_strength = args.dataset_path, args.sample_rate, args.cut_preprocess, args.process_effects, args.clean_dataset, args.clean_strength
os.makedirs(experiment_directory, exist_ok=True)
log_data = {translations['modelname']: args.model_name, translations['export_process']: experiment_directory, translations['dataset_folder']: dataset, translations['pretrain_sr']: sample_rate, translations['cpu_core']: num_processes, translations['split_audio']: cut_preprocess, translations['preprocess_effect']: preprocess_effects, translations['clear_audio']: clean_dataset}
if clean_dataset: log_data[translations['clean_strength']] = clean_strength
for key, value in log_data.items():
logger.debug(f"{key}: {value}")
pid_path = os.path.join(experiment_directory, "preprocess_pid.txt")
with open(pid_path, "w") as pid_file:
pid_file.write(str(os.getpid()))
try:
preprocess_training_set(dataset, sample_rate, num_processes, experiment_directory, config.per_preprocess, cut_preprocess, preprocess_effects, clean_dataset, clean_strength)
except Exception as e:
logger.error(f"{translations['process_audio_error']} {e}")
import traceback
logger.debug(traceback.format_exc())
if os.path.exists(pid_path): os.remove(pid_path)
logger.info(f"{translations['preprocess_model_success']} {args.model_name}")
if __name__ == "__main__":
mp.set_start_method("spawn", force=True)
main() |