File size: 6,863 Bytes
5c91488 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
import math
import numba as nb
import numpy as np
from matplotlib import mlab
from scipy import interpolate
from decimal import Decimal, ROUND_HALF_UP
def swipe(x, fs, f0_floor=50, f0_ceil=1100, frame_period=10, sTHR=0.3):
plim = np.array([f0_floor, f0_ceil])
t = np.arange(0, int(1000 * len(x) / fs / (frame_period) + 1)) * (frame_period / 1000)
log2pc = np.arange(np.log2(plim[0]) * 96, np.log2(plim[-1]) * 96)
log2pc *= (1 / 96)
pc = 2 ** log2pc
S = np.zeros((len(pc), len(t)))
logWs = [round_matlab(elm) for elm in np.log2(4 * 2 * fs / plim)]
ws = 2 ** np.arange(logWs[0], logWs[1] - 1, -1)
p0 = 4 * 2 * fs / ws
d = 1 + log2pc - np.log2(4 * 2 * fs / ws[0])
fERBs = erbs2hz(np.arange(hz2erbs(pc[0] / 4), hz2erbs(fs / 2), 0.1))
for i in range(len(ws)):
dn = round_matlab(4 * fs / p0[i])
X, f, ti = mlab.specgram(x=np.r_[np.zeros(int(ws[i] / 2)), np.r_[x, np.zeros(int(dn + ws[i] / 2))]], NFFT=ws[i], Fs=fs, window=np.hanning(ws[i] + 2)[1:-1], noverlap=max(0, np.round(ws[i] - dn)), mode='complex')
ti = np.r_[0, ti[:-1]]
M = np.maximum(0, interpolate.interp1d(f, np.abs(X.T), kind='cubic')(fERBs)).T
if i == len(ws) - 1:
j = np.where(d - (i + 1) > -1)[0]
k = np.where(d[j] - (i + 1) < 0)[0]
elif i == 0:
j = np.where(d - (i + 1) < 1)[0]
k = np.where(d[j] - (i + 1) > 0)[0]
else:
j = np.where(np.abs(d - (i + 1)) < 1)[0]
k = np.arange(len(j))
Si = pitchStrengthAllCandidates(fERBs, np.sqrt(M), pc[j])
Si = interpolate.interp1d(ti, Si, bounds_error=False, fill_value='nan')(t) if Si.shape[1] > 1 else np.full((len(Si), len(t)), np.nan)
mu = np.ones(j.shape)
mu[k] = 1 - np.abs(d[j[k]] - i - 1)
S[j, :] = S[j, :] + np.tile(mu.reshape(-1, 1), (1, Si.shape[1])) * Si
p = np.full((S.shape[1], 1), np.nan)
s = np.full((S.shape[1], 1), np.nan)
for j in range(S.shape[1]):
s[j] = np.max(S[:, j])
i = np.argmax(S[:, j])
if s[j] < sTHR: continue
if i == 0: p[j] = pc[0]
elif i == len(pc) - 1: p[j] = pc[0]
else:
I = np.arange(i-1, i+2)
tc = 1 / pc[I]
ntc = (tc / tc[1] - 1) * 2 * np.pi
idx = np.isfinite(S[I, j])
c = np.zeros(len(ntc))
c += np.nan
I_ = I[idx]
if len(I_) < 2: c[idx] = (S[I, j])[0] / ntc[0]
else: c[idx] = np.polyfit(ntc[idx], (S[I_, j]), 2)
pval = np.polyval(c, ((1 / (2 ** np.arange(np.log2(pc[I[0]]), np.log2(pc[I[2]]) + 1 / 12 / 64, 1 / 12 / 64))) / tc[1] - 1) * 2 * np.pi)
s[j] = np.max(pval)
p[j] = 2 ** (np.log2(pc[I[0]]) + (np.argmax(pval)) / 12 / 64)
p = p.flatten()
p[np.isnan(p)] = 0
return np.array(p, dtype=np.float32), np.array(t, dtype=np.float32)
def round_matlab(n):
return int(Decimal(n).quantize(0, ROUND_HALF_UP))
def pitchStrengthAllCandidates(f, L, pc):
den = np.sqrt(np.sum(L * L, axis=0))
den = np.where(den == 0, 2.220446049250313e-16, den)
L = L / den
S = np.zeros((len(pc), L.shape[1]))
for j in range(len(pc)):
S[j,:] = pitchStrengthOneCandidate(f, L, pc[j])
return S
def pitchStrengthOneCandidate(f, L, pc):
k = np.zeros(len(f))
q = f / pc
for i in ([1] + sieve(int(np.fix(f[-1] / pc - 0.75)))):
a = np.abs(q - i)
p = a < 0.25
k[p] = np.cos(2 * np.pi * q[p])
v = np.logical_and((0.25 < a), (a < 0.75))
k[v] = k[v] + np.cos(2 * np.pi * q[v]) / 2
k *= np.sqrt(1 / f)
k /= np.linalg.norm(k[k>0])
return k @ L
def hz2erbs(hz):
return 21.4 * np.log10(1 + hz / 229)
def erbs2hz(erbs):
return (10 ** (erbs / 21.4) - 1) * 229
def sieve(n):
primes = list(range(2, n + 1))
num = 2
while num < math.sqrt(n):
i = num
while i <= n:
i += num
if i in primes: primes.remove(i)
for j in primes:
if j > num:
num = j
break
return primes
def stonemask(x, fs, temporal_positions, f0):
refined_f0 = np.copy(f0)
for i in range(len(temporal_positions)):
if f0[i] != 0:
refined_f0[i] = get_refined_f0(x, fs, temporal_positions[i], f0[i])
if abs(refined_f0[i] - f0[i]) / f0[i] > 0.2: refined_f0[i] = f0[i]
return np.array(refined_f0, dtype=np.float32)
def get_refined_f0(x, fs, current_time, current_f0):
f0_initial = current_f0
half_window_length = np.ceil(3 * fs / f0_initial / 2)
window_length_in_time = (2 * half_window_length + 1) / fs
base_time = np.arange(-half_window_length, half_window_length + 1) / fs
fft_size = 2 ** math.ceil(math.log((half_window_length * 2 + 1), 2) + 1)
base_time = np.array([float("{0:.4f}".format(elm)) for elm in base_time])
index_raw = round_matlab((current_time + base_time) * fs)
window_time = ((index_raw - 1) / fs) - current_time
main_window = 0.42 + 0.5 * np.cos(2 * math.pi * window_time / window_length_in_time) + 0.08 * np.cos(4 * math.pi * window_time / window_length_in_time)
index = np.array(np.maximum(1, np.minimum(len(x), index_raw)), dtype=int)
spectrum = np.fft.fft(x[index - 1] * main_window, fft_size)
diff_spectrum = np.fft.fft(x[index - 1] * (-(np.diff(np.r_[0, main_window]) + np.diff(np.r_[main_window, 0])) / 2), fft_size)
power_spectrum = np.abs(spectrum) ** 2
from sys import float_info
power_spectrum[power_spectrum == 0] = float_info.epsilon
instantaneous_frequency = (np.arange(fft_size) / fft_size * fs) + (np.real(spectrum) * np.imag(diff_spectrum) - np.imag(spectrum) * np.real(diff_spectrum)) / power_spectrum * fs / 2 / math.pi
trim_index = np.array([1, 2])
index_list_trim = np.array(round_matlab(f0_initial * fft_size / fs * trim_index) + 1, int)
amp_list = np.sqrt(power_spectrum[index_list_trim - 1])
f0_initial = np.sum(amp_list * instantaneous_frequency[index_list_trim - 1]) / np.sum(amp_list * trim_index)
if f0_initial < 0: return 0
trim_index = np.array([1, 2, 3, 4, 5, 6])
index_list_trim = np.array(round_matlab(f0_initial * fft_size / fs * trim_index) + 1, int)
amp_list = np.sqrt(power_spectrum[index_list_trim - 1])
return np.sum(amp_list * instantaneous_frequency[index_list_trim - 1]) / np.sum(amp_list * trim_index)
@nb.jit((nb.float32[:],), nopython=True, cache=True)
def round_matlab(x):
y = x.copy()
y[x > 0] += 0.5
y[x <= 0] -= 0.5
return y |