File size: 13,990 Bytes
5c91488 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
import os
import sys
import time
import tqdm
import torch
import shutil
import logging
import argparse
import warnings
import onnxruntime
import logging.handlers
import concurrent.futures
import numpy as np
import torch.multiprocessing as mp
from random import shuffle
from distutils.util import strtobool
sys.path.append(os.getcwd())
from main.configs.config import Config
from main.library.predictors.Generator import Generator
from main.library.utils import check_predictors, check_embedders, load_audio, load_embedders_model
logger = logging.getLogger(__name__)
config = Config()
translations = config.translations
logger.propagate = False
warnings.filterwarnings("ignore")
for l in ["torch", "faiss", "httpx", "httpcore", "faiss.loader", "numba.core", "urllib3", "matplotlib"]:
logging.getLogger(l).setLevel(logging.ERROR)
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument("--model_name", type=str, required=True)
parser.add_argument("--rvc_version", type=str, default="v2")
parser.add_argument("--f0_method", type=str, default="rmvpe")
parser.add_argument("--pitch_guidance", type=lambda x: bool(strtobool(x)), default=True)
parser.add_argument("--hop_length", type=int, default=128)
parser.add_argument("--cpu_cores", type=int, default=2)
parser.add_argument("--gpu", type=str, default="-")
parser.add_argument("--sample_rate", type=int, required=True)
parser.add_argument("--embedder_model", type=str, default="contentvec_base")
parser.add_argument("--f0_onnx", type=lambda x: bool(strtobool(x)), default=False)
parser.add_argument("--embedders_mode", type=str, default="fairseq")
return parser.parse_args()
def generate_config(rvc_version, sample_rate, model_path):
config_save_path = os.path.join(model_path, "config.json")
if not os.path.exists(config_save_path): shutil.copy(os.path.join("main", "configs", rvc_version, f"{sample_rate}.json"), config_save_path)
def generate_filelist(pitch_guidance, model_path, rvc_version, sample_rate, embedders_mode = "fairseq"):
gt_wavs_dir, feature_dir = os.path.join(model_path, "sliced_audios"), os.path.join(model_path, f"{rvc_version}_extracted")
f0_dir, f0nsf_dir = None, None
if pitch_guidance: f0_dir, f0nsf_dir = os.path.join(model_path, "f0"), os.path.join(model_path, "f0_voiced")
gt_wavs_files, feature_files = set(name.split(".")[0] for name in os.listdir(gt_wavs_dir)), set(name.split(".")[0] for name in os.listdir(feature_dir))
names = gt_wavs_files & feature_files & set(name.split(".")[0] for name in os.listdir(f0_dir)) & set(name.split(".")[0] for name in os.listdir(f0nsf_dir)) if pitch_guidance else gt_wavs_files & feature_files
options = []
mute_base_path = os.path.join("assets", "logs", "mute")
for name in names:
options.append(f"{gt_wavs_dir}/{name}.wav|{feature_dir}/{name}.npy|{f0_dir}/{name}.wav.npy|{f0nsf_dir}/{name}.wav.npy|0" if pitch_guidance else f"{gt_wavs_dir}/{name}.wav|{feature_dir}/{name}.npy|0")
mute_audio_path, mute_feature_path = os.path.join(mute_base_path, "sliced_audios", f"mute{sample_rate}.wav"), os.path.join(mute_base_path, f"{rvc_version}_extracted", f"mute{'_spin' if embedders_mode == 'spin' else ''}.npy")
for _ in range(2):
options.append(f"{mute_audio_path}|{mute_feature_path}|{os.path.join(mute_base_path, 'f0', 'mute.wav.npy')}|{os.path.join(mute_base_path, 'f0_voiced', 'mute.wav.npy')}|0" if pitch_guidance else f"{mute_audio_path}|{mute_feature_path}|0")
shuffle(options)
with open(os.path.join(model_path, "filelist.txt"), "w") as f:
f.write("\n".join(options))
def setup_paths(exp_dir, version = None):
wav_path = os.path.join(exp_dir, "sliced_audios_16k")
if version:
out_path = os.path.join(exp_dir, f"{version}_extracted")
os.makedirs(out_path, exist_ok=True)
return wav_path, out_path
else:
output_root1, output_root2 = os.path.join(exp_dir, "f0"), os.path.join(exp_dir, "f0_voiced")
os.makedirs(output_root1, exist_ok=True); os.makedirs(output_root2, exist_ok=True)
return wav_path, output_root1, output_root2
def get_providers():
ort_providers = onnxruntime.get_available_providers()
if "CUDAExecutionProvider" in ort_providers: providers = ["CUDAExecutionProvider"]
elif "CoreMLExecutionProvider" in ort_providers: providers = ["CoreMLExecutionProvider"]
else: providers = ["CPUExecutionProvider"]
return providers
class FeatureInput:
def __init__(self, sample_rate=16000, hop_size=160, is_half=False, device=config.device):
self.fs = sample_rate
self.hop = hop_size
self.f0_bin = 256
self.f0_max = 1100.0
self.f0_min = 50.0
self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700)
self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700)
self.device = device
self.is_half = is_half
self.f0_gen = Generator(self.fs, self.hop, self.f0_min, self.f0_max, self.is_half, self.device, get_providers(), False)
def compute_f0(self, np_arr, f0_method, hop_length, f0_onnx=False):
self.f0_gen.hop_length, self.f0_gen.f0_onnx_mode = hop_length, f0_onnx
return self.f0_gen.calculator(f0_method, np_arr, None, 0)
def coarse_f0(self, f0):
return np.rint(np.clip(((1127 * np.log(1 + f0 / 700)) - self.f0_mel_min) * (self.f0_bin - 2) / (self.f0_mel_max - self.f0_mel_min) + 1, 1, self.f0_bin - 1)).astype(int)
def process_file(self, file_info, f0_method, hop_length, f0_onnx):
inp_path, opt_path1, opt_path2, file_inp = file_info
if os.path.exists(opt_path1 + ".npy") and os.path.exists(opt_path2 + ".npy"): return
try:
feature_pit = self.compute_f0(load_audio(logger, file_inp, self.fs), f0_method, hop_length, f0_onnx)
if isinstance(feature_pit, tuple): feature_pit = feature_pit[0]
np.save(opt_path2, feature_pit, allow_pickle=False)
np.save(opt_path1, self.coarse_f0(feature_pit), allow_pickle=False)
except Exception as e:
raise RuntimeError(f"{translations['extract_file_error']} {inp_path}: {e}")
def process_files(self, files, f0_method, hop_length, f0_onnx, device, is_half, threads):
self.device = device
self.is_half = is_half
def worker(file_info):
self.process_file(file_info, f0_method, hop_length, f0_onnx)
with tqdm.tqdm(total=len(files), ncols=100, unit="p", leave=True) as pbar:
with concurrent.futures.ThreadPoolExecutor(max_workers=threads) as executor:
for _ in concurrent.futures.as_completed([executor.submit(worker, f) for f in files]):
pbar.update(1)
def run_pitch_extraction(exp_dir, f0_method, hop_length, num_processes, devices, f0_onnx, is_half):
input_root, *output_roots = setup_paths(exp_dir)
output_root1, output_root2 = output_roots if len(output_roots) == 2 else (output_roots[0], None)
paths = [(os.path.join(input_root, name), os.path.join(output_root1, name) if output_root1 else None, os.path.join(output_root2, name) if output_root2 else None, os.path.join(input_root, name)) for name in sorted(os.listdir(input_root)) if "spec" not in name]
start_time = time.time()
logger.info(translations["extract_f0_method"].format(num_processes=num_processes, f0_method=f0_method))
feature_input = FeatureInput()
with concurrent.futures.ProcessPoolExecutor(max_workers=len(devices)) as executor:
concurrent.futures.wait([executor.submit(feature_input.process_files, paths[i::len(devices)], f0_method, hop_length, f0_onnx, devices[i], is_half, num_processes // len(devices)) for i in range(len(devices))])
logger.info(translations["extract_f0_success"].format(elapsed_time=f"{(time.time() - start_time):.2f}"))
def extract_features(model, feats, version):
return torch.as_tensor(model.run([model.get_outputs()[0].name, model.get_outputs()[1].name], {"feats": feats.detach().cpu().numpy()})[0 if version == "v1" else 1], dtype=torch.float32, device=feats.device)
def process_file_embedding(files, embedder_model, embedders_mode, device, version, is_half, threads):
model, embed_suffix = load_embedders_model(embedder_model, embedders_mode, providers=get_providers())
if embed_suffix != ".onnx": model = model.to(device).to(torch.float16 if is_half else torch.float32).eval()
threads = max(1, threads)
def worker(file_info):
file, out_path = file_info
out_file_path = os.path.join(out_path, os.path.basename(file.replace("wav", "npy")))
if os.path.exists(out_file_path): return
feats = torch.from_numpy(load_audio(logger, file, 16000)).to(device).to(torch.float16 if is_half else torch.float32).view(1, -1)
with torch.no_grad():
if embed_suffix == ".pt":
logits = model.extract_features(**{"source": feats, "padding_mask": torch.BoolTensor(feats.shape).fill_(False).to(device), "output_layer": 9 if version == "v1" else 12})
feats = model.final_proj(logits[0]) if version == "v1" else logits[0]
elif embed_suffix == ".onnx": feats = extract_features(model, feats, version).to(device)
elif embed_suffix == ".safetensors":
logits = model(feats)["last_hidden_state"]
feats = (model.final_proj(logits[0]).unsqueeze(0) if version == "v1" else logits)
else: raise ValueError(translations["option_not_valid"])
feats = feats.squeeze(0).float().cpu().numpy()
if not np.isnan(feats).any(): np.save(out_file_path, feats, allow_pickle=False)
else: logger.warning(f"{file} {translations['NaN']}")
with tqdm.tqdm(total=len(files), ncols=100, unit="p", leave=True) as pbar:
with concurrent.futures.ThreadPoolExecutor(max_workers=threads) as executor:
for _ in concurrent.futures.as_completed([executor.submit(worker, f) for f in files]):
pbar.update(1)
def run_embedding_extraction(exp_dir, version, num_processes, devices, embedder_model, embedders_mode, is_half):
wav_path, out_path = setup_paths(exp_dir, version)
start_time = time.time()
logger.info(translations["start_extract_hubert"])
paths = sorted([(os.path.join(wav_path, file), out_path) for file in os.listdir(wav_path) if file.endswith(".wav")])
with concurrent.futures.ProcessPoolExecutor(max_workers=len(devices)) as executor:
concurrent.futures.wait([executor.submit(process_file_embedding, paths[i::len(devices)], embedder_model, embedders_mode, devices[i], version, is_half, num_processes // len(devices)) for i in range(len(devices))])
logger.info(translations["extract_hubert_success"].format(elapsed_time=f"{(time.time() - start_time):.2f}"))
def main():
args = parse_arguments()
exp_dir = os.path.join("assets", "logs", args.model_name)
f0_method, hop_length, num_processes, gpus, version, pitch_guidance, sample_rate, embedder_model, f0_onnx, embedders_mode = args.f0_method, args.hop_length, args.cpu_cores, args.gpu, args.rvc_version, args.pitch_guidance, args.sample_rate, args.embedder_model, args.f0_onnx, args.embedders_mode
devices = ["cpu"] if gpus == "-" else [f"cuda:{idx}" for idx in gpus.split("-")]
check_predictors(f0_method, f0_onnx); check_embedders(embedder_model, embedders_mode)
if logger.hasHandlers(): logger.handlers.clear()
else:
console_handler = logging.StreamHandler()
console_formatter = logging.Formatter(fmt="\n%(asctime)s.%(msecs)03d | %(levelname)s | %(module)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
console_handler.setFormatter(console_formatter)
console_handler.setLevel(logging.INFO)
file_handler = logging.handlers.RotatingFileHandler(os.path.join(exp_dir, "extract.log"), maxBytes=5*1024*1024, backupCount=3, encoding='utf-8')
file_formatter = logging.Formatter(fmt="\n%(asctime)s.%(msecs)03d | %(levelname)s | %(module)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
file_handler.setFormatter(file_formatter)
file_handler.setLevel(logging.DEBUG)
logger.addHandler(console_handler)
logger.addHandler(file_handler)
logger.setLevel(logging.DEBUG)
log_data = {translations['modelname']: args.model_name, translations['export_process']: exp_dir, translations['f0_method']: f0_method, translations['pretrain_sr']: sample_rate, translations['cpu_core']: num_processes, "Gpu": gpus, "Hop length": hop_length, translations['training_version']: version, translations['extract_f0']: pitch_guidance, translations['hubert_model']: embedder_model, translations["f0_onnx_mode"]: f0_onnx, translations["embed_mode"]: embedders_mode}
for key, value in log_data.items():
logger.debug(f"{key}: {value}")
pid_path = os.path.join(exp_dir, "extract_pid.txt")
with open(pid_path, "w") as pid_file:
pid_file.write(str(os.getpid()))
try:
run_pitch_extraction(exp_dir, f0_method, hop_length, num_processes, devices, f0_onnx, config.is_half)
run_embedding_extraction(exp_dir, version, num_processes, devices, embedder_model, embedders_mode, config.is_half)
generate_config(version, sample_rate, exp_dir)
generate_filelist(pitch_guidance, exp_dir, version, sample_rate, embedders_mode)
except Exception as e:
logger.error(f"{translations['extract_error']}: {e}")
import traceback
logger.debug(traceback.format_exc())
if os.path.exists(pid_path): os.remove(pid_path)
logger.info(f"{translations['extract_success']} {args.model_name}.")
if __name__ == "__main__":
mp.set_start_method("spawn", force=True)
main() |