File size: 13,990 Bytes
5c91488
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import os
import sys
import time
import tqdm
import torch
import shutil
import logging
import argparse
import warnings
import onnxruntime
import logging.handlers
import concurrent.futures

import numpy as np
import torch.multiprocessing as mp

from random import shuffle
from distutils.util import strtobool

sys.path.append(os.getcwd())

from main.configs.config import Config
from main.library.predictors.Generator import Generator
from main.library.utils import check_predictors, check_embedders, load_audio, load_embedders_model

logger = logging.getLogger(__name__)
config = Config()
translations = config.translations
logger.propagate = False

warnings.filterwarnings("ignore")
for l in ["torch", "faiss", "httpx", "httpcore", "faiss.loader", "numba.core", "urllib3", "matplotlib"]:
    logging.getLogger(l).setLevel(logging.ERROR)

def parse_arguments():
    parser = argparse.ArgumentParser()
    parser.add_argument("--model_name", type=str, required=True)
    parser.add_argument("--rvc_version", type=str, default="v2")
    parser.add_argument("--f0_method", type=str, default="rmvpe")
    parser.add_argument("--pitch_guidance", type=lambda x: bool(strtobool(x)), default=True)
    parser.add_argument("--hop_length", type=int, default=128)
    parser.add_argument("--cpu_cores", type=int, default=2)
    parser.add_argument("--gpu", type=str, default="-")
    parser.add_argument("--sample_rate", type=int, required=True)
    parser.add_argument("--embedder_model", type=str, default="contentvec_base")
    parser.add_argument("--f0_onnx", type=lambda x: bool(strtobool(x)), default=False)
    parser.add_argument("--embedders_mode", type=str, default="fairseq")

    return parser.parse_args()

def generate_config(rvc_version, sample_rate, model_path):
    config_save_path = os.path.join(model_path, "config.json")
    if not os.path.exists(config_save_path): shutil.copy(os.path.join("main", "configs", rvc_version, f"{sample_rate}.json"), config_save_path)

def generate_filelist(pitch_guidance, model_path, rvc_version, sample_rate, embedders_mode = "fairseq"):
    gt_wavs_dir, feature_dir = os.path.join(model_path, "sliced_audios"), os.path.join(model_path, f"{rvc_version}_extracted")
    f0_dir, f0nsf_dir = None, None
    if pitch_guidance: f0_dir, f0nsf_dir = os.path.join(model_path, "f0"), os.path.join(model_path, "f0_voiced")
    gt_wavs_files, feature_files = set(name.split(".")[0] for name in os.listdir(gt_wavs_dir)), set(name.split(".")[0] for name in os.listdir(feature_dir))
    names = gt_wavs_files & feature_files & set(name.split(".")[0] for name in os.listdir(f0_dir)) & set(name.split(".")[0] for name in os.listdir(f0nsf_dir)) if pitch_guidance else gt_wavs_files & feature_files
    options = []
    mute_base_path = os.path.join("assets", "logs", "mute")

    for name in names:
        options.append(f"{gt_wavs_dir}/{name}.wav|{feature_dir}/{name}.npy|{f0_dir}/{name}.wav.npy|{f0nsf_dir}/{name}.wav.npy|0" if pitch_guidance else f"{gt_wavs_dir}/{name}.wav|{feature_dir}/{name}.npy|0")

    mute_audio_path, mute_feature_path = os.path.join(mute_base_path, "sliced_audios", f"mute{sample_rate}.wav"), os.path.join(mute_base_path, f"{rvc_version}_extracted", f"mute{'_spin' if embedders_mode == 'spin' else ''}.npy")
    for _ in range(2):
        options.append(f"{mute_audio_path}|{mute_feature_path}|{os.path.join(mute_base_path, 'f0', 'mute.wav.npy')}|{os.path.join(mute_base_path, 'f0_voiced', 'mute.wav.npy')}|0" if pitch_guidance else f"{mute_audio_path}|{mute_feature_path}|0")

    shuffle(options)
    with open(os.path.join(model_path, "filelist.txt"), "w") as f:
        f.write("\n".join(options))

def setup_paths(exp_dir, version = None):
    wav_path = os.path.join(exp_dir, "sliced_audios_16k")
    if version:
        out_path = os.path.join(exp_dir, f"{version}_extracted")
        os.makedirs(out_path, exist_ok=True)
        return wav_path, out_path
    else:
        output_root1, output_root2 = os.path.join(exp_dir, "f0"), os.path.join(exp_dir, "f0_voiced")
        os.makedirs(output_root1, exist_ok=True); os.makedirs(output_root2, exist_ok=True)
        return wav_path, output_root1, output_root2

def get_providers():
    ort_providers = onnxruntime.get_available_providers()

    if "CUDAExecutionProvider" in ort_providers: providers = ["CUDAExecutionProvider"]
    elif "CoreMLExecutionProvider" in ort_providers: providers = ["CoreMLExecutionProvider"]
    else: providers = ["CPUExecutionProvider"]

    return providers

class FeatureInput:
    def __init__(self, sample_rate=16000, hop_size=160, is_half=False, device=config.device):
        self.fs = sample_rate
        self.hop = hop_size
        self.f0_bin = 256
        self.f0_max = 1100.0
        self.f0_min = 50.0
        self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700)
        self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700)
        self.device = device
        self.is_half = is_half
        self.f0_gen = Generator(self.fs, self.hop, self.f0_min, self.f0_max, self.is_half, self.device, get_providers(), False)

    def compute_f0(self, np_arr, f0_method, hop_length, f0_onnx=False):
        self.f0_gen.hop_length, self.f0_gen.f0_onnx_mode = hop_length, f0_onnx
        return self.f0_gen.calculator(f0_method, np_arr, None, 0)

    def coarse_f0(self, f0):
        return np.rint(np.clip(((1127 * np.log(1 + f0 / 700)) - self.f0_mel_min) * (self.f0_bin - 2) / (self.f0_mel_max - self.f0_mel_min) + 1, 1, self.f0_bin - 1)).astype(int)

    def process_file(self, file_info, f0_method, hop_length, f0_onnx):
        inp_path, opt_path1, opt_path2, file_inp = file_info
        if os.path.exists(opt_path1 + ".npy") and os.path.exists(opt_path2 + ".npy"): return

        try:
            feature_pit = self.compute_f0(load_audio(logger, file_inp, self.fs), f0_method, hop_length, f0_onnx)
            if isinstance(feature_pit, tuple): feature_pit = feature_pit[0]
            np.save(opt_path2, feature_pit, allow_pickle=False)
            np.save(opt_path1, self.coarse_f0(feature_pit), allow_pickle=False)
        except Exception as e:
            raise RuntimeError(f"{translations['extract_file_error']} {inp_path}: {e}")

    def process_files(self, files, f0_method, hop_length, f0_onnx, device, is_half, threads):
        self.device = device
        self.is_half = is_half

        def worker(file_info):
            self.process_file(file_info, f0_method, hop_length, f0_onnx)

        with tqdm.tqdm(total=len(files), ncols=100, unit="p", leave=True) as pbar:
            with concurrent.futures.ThreadPoolExecutor(max_workers=threads) as executor:
                for _ in concurrent.futures.as_completed([executor.submit(worker, f) for f in files]):
                    pbar.update(1)

def run_pitch_extraction(exp_dir, f0_method, hop_length, num_processes, devices, f0_onnx, is_half):
    input_root, *output_roots = setup_paths(exp_dir)
    output_root1, output_root2 = output_roots if len(output_roots) == 2 else (output_roots[0], None)
    paths = [(os.path.join(input_root, name), os.path.join(output_root1, name) if output_root1 else None, os.path.join(output_root2, name) if output_root2 else None, os.path.join(input_root, name)) for name in sorted(os.listdir(input_root)) if "spec" not in name]
    start_time = time.time()
    logger.info(translations["extract_f0_method"].format(num_processes=num_processes, f0_method=f0_method))

    feature_input = FeatureInput()
    with concurrent.futures.ProcessPoolExecutor(max_workers=len(devices)) as executor:
        concurrent.futures.wait([executor.submit(feature_input.process_files, paths[i::len(devices)], f0_method, hop_length, f0_onnx, devices[i], is_half, num_processes // len(devices)) for i in range(len(devices))])

    logger.info(translations["extract_f0_success"].format(elapsed_time=f"{(time.time() - start_time):.2f}"))

def extract_features(model, feats, version):
    return torch.as_tensor(model.run([model.get_outputs()[0].name, model.get_outputs()[1].name], {"feats": feats.detach().cpu().numpy()})[0 if version == "v1" else 1], dtype=torch.float32, device=feats.device)

def process_file_embedding(files, embedder_model, embedders_mode, device, version, is_half, threads):
    model, embed_suffix = load_embedders_model(embedder_model, embedders_mode, providers=get_providers())
    if embed_suffix != ".onnx": model = model.to(device).to(torch.float16 if is_half else torch.float32).eval()
    threads = max(1, threads)

    def worker(file_info):
        file, out_path = file_info
        out_file_path = os.path.join(out_path, os.path.basename(file.replace("wav", "npy")))
        if os.path.exists(out_file_path): return
        feats = torch.from_numpy(load_audio(logger, file, 16000)).to(device).to(torch.float16 if is_half else torch.float32).view(1, -1)

        with torch.no_grad():
            if embed_suffix == ".pt":
                logits = model.extract_features(**{"source": feats, "padding_mask": torch.BoolTensor(feats.shape).fill_(False).to(device), "output_layer": 9 if version == "v1" else 12})
                feats = model.final_proj(logits[0]) if version == "v1" else logits[0]
            elif embed_suffix == ".onnx": feats = extract_features(model, feats, version).to(device)
            elif embed_suffix == ".safetensors":
                logits = model(feats)["last_hidden_state"]
                feats = (model.final_proj(logits[0]).unsqueeze(0) if version == "v1" else logits)
            else: raise ValueError(translations["option_not_valid"])

        feats = feats.squeeze(0).float().cpu().numpy()
        if not np.isnan(feats).any(): np.save(out_file_path, feats, allow_pickle=False)
        else: logger.warning(f"{file} {translations['NaN']}")

    with tqdm.tqdm(total=len(files), ncols=100, unit="p", leave=True) as pbar:
        with concurrent.futures.ThreadPoolExecutor(max_workers=threads) as executor:
            for _ in concurrent.futures.as_completed([executor.submit(worker, f) for f in files]):
                pbar.update(1)

def run_embedding_extraction(exp_dir, version, num_processes, devices, embedder_model, embedders_mode, is_half):
    wav_path, out_path = setup_paths(exp_dir, version)
    start_time = time.time()
    logger.info(translations["start_extract_hubert"])
    paths = sorted([(os.path.join(wav_path, file), out_path) for file in os.listdir(wav_path) if file.endswith(".wav")])

    with concurrent.futures.ProcessPoolExecutor(max_workers=len(devices)) as executor:
        concurrent.futures.wait([executor.submit(process_file_embedding, paths[i::len(devices)], embedder_model, embedders_mode, devices[i], version, is_half, num_processes // len(devices)) for i in range(len(devices))])

    logger.info(translations["extract_hubert_success"].format(elapsed_time=f"{(time.time() - start_time):.2f}"))

def main():
    args = parse_arguments()
    exp_dir = os.path.join("assets", "logs", args.model_name)
    f0_method, hop_length, num_processes, gpus, version, pitch_guidance, sample_rate, embedder_model, f0_onnx, embedders_mode = args.f0_method, args.hop_length, args.cpu_cores, args.gpu, args.rvc_version, args.pitch_guidance, args.sample_rate, args.embedder_model, args.f0_onnx, args.embedders_mode
    devices = ["cpu"] if gpus == "-" else [f"cuda:{idx}" for idx in gpus.split("-")]
    check_predictors(f0_method, f0_onnx); check_embedders(embedder_model, embedders_mode)

    if logger.hasHandlers(): logger.handlers.clear()
    else:
        console_handler = logging.StreamHandler()
        console_formatter = logging.Formatter(fmt="\n%(asctime)s.%(msecs)03d | %(levelname)s | %(module)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
        console_handler.setFormatter(console_formatter)
        console_handler.setLevel(logging.INFO)
        file_handler = logging.handlers.RotatingFileHandler(os.path.join(exp_dir, "extract.log"), maxBytes=5*1024*1024, backupCount=3, encoding='utf-8')
        file_formatter = logging.Formatter(fmt="\n%(asctime)s.%(msecs)03d | %(levelname)s | %(module)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
        file_handler.setFormatter(file_formatter)
        file_handler.setLevel(logging.DEBUG)
        logger.addHandler(console_handler)
        logger.addHandler(file_handler)
        logger.setLevel(logging.DEBUG)

    log_data = {translations['modelname']: args.model_name, translations['export_process']: exp_dir, translations['f0_method']: f0_method, translations['pretrain_sr']: sample_rate, translations['cpu_core']: num_processes, "Gpu": gpus, "Hop length": hop_length, translations['training_version']: version, translations['extract_f0']: pitch_guidance, translations['hubert_model']: embedder_model, translations["f0_onnx_mode"]: f0_onnx, translations["embed_mode"]: embedders_mode}
    for key, value in log_data.items():
        logger.debug(f"{key}: {value}")

    pid_path = os.path.join(exp_dir, "extract_pid.txt")
    with open(pid_path, "w") as pid_file:
        pid_file.write(str(os.getpid()))
    
    try:
        run_pitch_extraction(exp_dir, f0_method, hop_length, num_processes, devices, f0_onnx, config.is_half)
        run_embedding_extraction(exp_dir, version, num_processes, devices, embedder_model, embedders_mode, config.is_half)
        generate_config(version, sample_rate, exp_dir)
        generate_filelist(pitch_guidance, exp_dir, version, sample_rate, embedders_mode)
    except Exception as e:
        logger.error(f"{translations['extract_error']}: {e}")
        import traceback
        logger.debug(traceback.format_exc())

    if os.path.exists(pid_path): os.remove(pid_path)
    logger.info(f"{translations['extract_success']} {args.model_name}.")

if __name__ == "__main__": 
    mp.set_start_method("spawn", force=True)
    main()