File size: 18,598 Bytes
e4d8df5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
import copy
import math

import numba as nb
import numpy as np
import multiprocessing as mp

from scipy import signal
from scipy.fftpack import fft
from scipy.signal import lfilter
from scipy.interpolate import interp1d
from decimal import Decimal, ROUND_HALF_UP


mp.set_start_method("spawn", force=True)

EPS = 0.00000000000000022204460492503131


def harvest(x, fs, f0_floor=50, f0_ceil=1100, frame_period=10):
    basic_temporal_positions = np.arange(0, int(1000 * len(x) / fs / 1 + 1)) * 1 / 1000
    channels_in_octave = 40
    f0_floor_adjusted = f0_floor * 0.9

    y, actual_fs = CalculateDownsampledSignal(x, fs, 8000)

    f0_candidates, number_of_candidates = DetectCandidates(CalculateCandidates(len(basic_temporal_positions), np.array([f0_floor_adjusted * pow(2.0, (i + 1) / channels_in_octave) for i in range(int(np.ceil(np.log2((f0_ceil * 1.1) / f0_floor_adjusted) * channels_in_octave) + 1))]), len(y), basic_temporal_positions, actual_fs, np.fft.fft(y, int(2 ** np.ceil(np.log2(len(y) + int(fs / f0_floor_adjusted * 4 + 0.5) + 1)))), f0_floor, f0_ceil))
    f0_candidates = OverlapF0Candidates(f0_candidates, number_of_candidates)

    f0_candidates, f0_candidates_score = RefineCandidates(y, actual_fs, basic_temporal_positions, f0_candidates, f0_floor, f0_ceil)
    f0_candidates, f0_candidates_score = RemoveUnreliableCandidates(f0_candidates, f0_candidates_score)

    smoothed_f0 = SmoothF0(FixF0Contour(f0_candidates, f0_candidates_score))
    temporal_positions = np.arange(0, int(1000 * len(x) / fs / frame_period + 1)) * frame_period / 1000

    return np.array(smoothed_f0[np.array(np.minimum(len(smoothed_f0) - 1, round_matlab(temporal_positions * 1000)), dtype=int)], dtype=np.float32), np.array(temporal_positions, dtype=np.float32)

def CalculateDownsampledSignal(x, fs, target_fs):
    decimation_ratio = int(fs / target_fs + 0.5)

    if fs <= target_fs:
        y = copy.deepcopy(x)
        actual_fs = fs
    else:
        offset = int(np.ceil(140 / decimation_ratio) * decimation_ratio)
        actual_fs = fs / decimation_ratio
        y = decimate_matlab(np.append(np.append(np.ones(offset) * x[0], x), np.ones(offset) * x[-1]), decimation_ratio, n = 3)[int(offset / decimation_ratio) : int(-offset / decimation_ratio)]

    y -= np.mean(y)
    return y, actual_fs

def CalculateCandidates(number_of_frames, boundary_f0_list, y_length, temporal_positions, actual_fs, y_spectrum, f0_floor, f0_ceil):
    raw_f0_candidates = np.zeros((len(boundary_f0_list), number_of_frames))

    for i in range(len(boundary_f0_list)):
        raw_f0_candidates[i, :] = CalculateRawEvent(boundary_f0_list[i], actual_fs, y_spectrum, y_length, temporal_positions, f0_floor, f0_ceil)

    return raw_f0_candidates

def DetectCandidates(raw_f0_candidates):
    number_of_channels, number_of_frames = raw_f0_candidates.shape
    f0_candidates = np.zeros((int(number_of_channels / 10 + 0.5), number_of_frames))

    number_of_candidates = 0
    threshold = 10

    for i in np.arange(number_of_frames):
        tmp = np.array(raw_f0_candidates[:, i])
        tmp[tmp > 0] = 1
        tmp[0] = 0
        tmp[-1] = 0
        tmp = np.diff(tmp)

        st = np.where(tmp == 1)[0]
        ed = np.where(tmp == -1)[0]

        count = 0

        for j in np.arange(len(st)):
            dif = ed[j] - st[j]

            if dif >= threshold:
                f0_candidates[count, i] = np.mean(raw_f0_candidates[st[j] + 1: ed[j] + 1, i])
                count += 1

        number_of_candidates = max(number_of_candidates, count)

    return f0_candidates, number_of_candidates

def OverlapF0Candidates(f0_candidates, max_candidates):
    n = 3 
    number_of_candidates = n * 2 + 1

    new_f0_candidates = np.zeros((number_of_candidates * max_candidates, f0_candidates.shape[1]))
    new_f0_candidates[0, :] = f0_candidates[number_of_candidates - 1, :]

    for i in np.arange(number_of_candidates):
        st1 = max(-(i - n) + 1, 1)
        ed1 = min(-(i - n), 0)
        new_f0_candidates[np.arange(max_candidates) + i * max_candidates, st1 - 1 : new_f0_candidates.shape[1] + ed1] = f0_candidates[np.arange(max_candidates), -ed1 : new_f0_candidates.shape[1] - (st1 - 1)]
        
    return new_f0_candidates

def RefineCandidates(x, fs, temporal_positions, f0_candidates, f0_floor, f0_ceil):
    N, f = f0_candidates.shape

    with mp.Pool(mp.cpu_count()) as pool:
        results = np.array(pool.starmap(GetRefinedF0, [(x, fs, temporal_positions[i], f0_candidates[j, i], f0_floor, f0_ceil) for j in np.arange(N) for i in np.arange(f)]))

    return np.reshape(results[:, 0], [N, f]), np.reshape(results[:, 1], [N, f])

@nb.jit((nb.float64[:],), nopython=True, cache=True)
def round_matlab(x):
    y = x.copy()
    y[x > 0] += 0.5
    y[x <= 0] -= 0.5

    return y

def GetRefinedF0(x, fs, current_time, current_f0, f0_floor, f0_ceil):
    if current_f0 == 0: return 0, 0

    half_window_length = np.ceil(3 * fs / current_f0 / 2)
    fft_size = int(2 ** np.ceil(np.log2((half_window_length * 2 + 1)) + 1))
    index_raw = round_matlab((current_time + (np.arange(-half_window_length, half_window_length + 1) / fs)) * fs + 0.001)
    common = math.pi * ((index_raw - 1) / fs - current_time) / ((2 * half_window_length + 1) / fs)
    main_window = 0.42 + 0.5 * np.cos(2 * common) + 0.08 * np.cos(4 * common)

    diff_window = np.empty_like(main_window)
    diff_window[0] = - main_window[1] / 2
    diff_window[-1] = main_window[-2] / 2
    diff = np.diff(main_window)
    diff_window[1:-1] = - (diff[1:] + diff[:-1]) / 2

    index = (np.maximum(1, np.minimum(len(x), index_raw)) - 1).astype(int)
    spectrum = fft(x[index] * main_window, fft_size)
    diff_spectrum = fft(x[index] * diff_window, fft_size)

    power_spectrum = np.abs(spectrum) ** 2
    number_of_harmonics = min(np.floor(fs / 2 / current_f0), 6) 
    harmonic_index = np.arange(1, number_of_harmonics + 1)

    index = round_matlab(current_f0 * fft_size / fs * harmonic_index).astype(int)
    instantaneous_frequency_list = ((np.arange(fft_size) / fft_size + (spectrum.real * diff_spectrum.imag - spectrum.imag * diff_spectrum.real) / power_spectrum / 2 / math.pi) * fs)[index]
    amplitude_list = np.sqrt(power_spectrum[index])

    refined_f0 = np.sum(amplitude_list * instantaneous_frequency_list) / np.sum(amplitude_list * harmonic_index)
    refined_score = 1 / (0.000000000001 + np.mean(np.abs(((instantaneous_frequency_list / harmonic_index) - current_f0) / current_f0)))

    if refined_f0 < f0_floor or refined_f0 > f0_ceil or refined_score < 2.5: refined_f0 = refined_score = 0

    return refined_f0, refined_score

def RemoveUnreliableCandidates(f0_candidates, f0_candidates_score):
    new_f0_candidates = np.array(f0_candidates)
    new_f0_candidates_score = np.array(f0_candidates_score)

    for i in np.arange(1, f0_candidates.shape[1] - 1):
        for j in np.arange(0, f0_candidates.shape[0]):
            reference_f0 = f0_candidates[j, i]
            if reference_f0 == 0: continue

            _, min_error1 = SelectBestF0(reference_f0, f0_candidates[:, i + 1], 1)
            _, min_error2 = SelectBestF0(reference_f0, f0_candidates[:, i - 1], 1)

            min_error = min([min_error1, min_error2])
            if min_error > 0.05: new_f0_candidates[j, i] = new_f0_candidates_score[j, i] = 0

    return new_f0_candidates, new_f0_candidates_score

@nb.jit((nb.float64, nb.float64[:], nb.float64), nopython=True, cache=True)  
def SelectBestF0(reference_f0, f0_candidates, allowed_range):
    best_f0 = 0
    best_error = allowed_range

    for i in np.arange(len(f0_candidates)):
        tmp = np.abs(reference_f0 - f0_candidates[i]) / reference_f0
        if tmp > best_error: continue

        best_f0 = f0_candidates[i]
        best_error = tmp

    return best_f0, best_error

def CalculateRawEvent(boundary_f0, fs, y_spectrum, y_length, temporal_positions, f0_floor, f0_ceil):
    filter_length_half = int(Decimal(fs / boundary_f0 * 2).quantize(0, ROUND_HALF_UP))

    filtered_signal = np.real(np.fft.ifft(np.fft.fft(nuttall(filter_length_half * 2 + 1) * np.cos(2 * math.pi * boundary_f0 * np.arange(-filter_length_half, filter_length_half + 1) / fs), len(y_spectrum)) * y_spectrum))
    filtered_signal = filtered_signal[(filter_length_half + 1) + np.arange(y_length)]

    neg_loc, neg_f0 = ZeroCrossingEngine(filtered_signal, fs)
    pos_loc, pos_f0 = ZeroCrossingEngine(-filtered_signal, fs)

    peak_loc, peak_f0 = ZeroCrossingEngine(np.diff(filtered_signal), fs)
    dip_loc, dip_f0 = ZeroCrossingEngine(-np.diff(filtered_signal), fs)

    f0_candidates = GetF0Candidates(neg_loc, neg_f0, pos_loc, pos_f0, peak_loc, peak_f0, dip_loc, dip_f0, temporal_positions)
    f0_candidates[f0_candidates > boundary_f0 * 1.1] = f0_candidates[f0_candidates < boundary_f0 * 0.9] = f0_candidates[f0_candidates > f0_ceil] = f0_candidates[f0_candidates < f0_floor] = 0

    return f0_candidates

@nb.jit((nb.float64[:], nb.float64), nopython=True, cache=True)
def ZeroCrossingEngine(x, fs):
    y = np.empty_like(x)
    y[:-1] = x[1:]
    y[-1] = x[-1]

    negative_going_points = np.arange(1, len(x) + 1) * ((y * x < 0) * (y < x))
    edge_list = negative_going_points[negative_going_points > 0]
    fine_edge_list = (edge_list) - x[edge_list - 1] / (x[edge_list] - x[edge_list - 1])

    return (fine_edge_list[:len(fine_edge_list) - 1] + fine_edge_list[1:]) / 2 / fs, fs / np.diff(fine_edge_list)

def FixF0Contour(f0_candidates, f0_candidates_score):
    return FixStep4(FixStep3(FixStep2(FixStep1(SearchF0Base(f0_candidates, f0_candidates_score), 0.008), 6), f0_candidates, 0.18, f0_candidates_score), 9)

def SearchF0Base(f0_candidates, f0_candidates_score):
    f0_base = np.zeros((f0_candidates.shape[1]))

    for i in range(len(f0_base)):
        f0_base[i] = f0_candidates[np.argmax(f0_candidates_score[:, i]), i]

    return f0_base

@nb.jit((nb.float64[:], nb.float64), nopython=True, cache=True)
def FixStep1(f0_base, allowed_range):
    f0_step1 = np.empty_like(f0_base)
    f0_step1[:] = f0_base
    f0_step1[0] = f0_step1[1] = 0

    for i in np.arange(2, len(f0_base)):
        if f0_base[i] == 0: continue

        reference_f0 = f0_base[i - 1] * 2 - f0_base[i - 2]
        if np.abs((f0_base[i] - reference_f0) / (reference_f0 + EPS)) > allowed_range and np.abs((f0_base[i] - f0_base[i - 1]) / (f0_base[i - 1] + EPS)) > allowed_range: f0_step1[i] = 0

    return f0_step1

def FixStep2(f0_step1, voice_range_minimum):
    f0_step2 = np.empty_like(f0_step1)
    f0_step2[:] = f0_step1

    boundary_list = GetBoundaryList(f0_step1)

    for i in np.arange(1, len(boundary_list) // 2 + 1):
        if boundary_list[2 * i - 1] - boundary_list[(2 * i) - 2] < voice_range_minimum: f0_step2[boundary_list[(2 * i) - 2] : boundary_list[2 * i - 1] + 1] = 0

    return f0_step2

def FixStep3(f0_step2, f0_candidates, allowed_range, f0_candidates_score):
    f0_step3 = np.array(f0_step2)
    boundary_list = GetBoundaryList(f0_step2)

    multi_channel_f0 = GetMultiChannelF0(f0_step2, boundary_list)
    range = np.zeros((len(boundary_list) // 2, 2))

    count = -1
    for i in np.arange(1, len(boundary_list) // 2 + 1):
        tmp_range = np.zeros(2)

        extended_f0, tmp_range[1] = ExtendF0(multi_channel_f0[i - 1, :], boundary_list[i * 2 - 1], min(len(f0_step2) - 2, boundary_list[i * 2 - 1] + 100), 1, f0_candidates, allowed_range)
        tmp_f0_sequence, tmp_range[0] = ExtendF0(extended_f0, boundary_list[(i * 2) - 2], max(1, boundary_list[(i * 2) - 2] - 100), -1, f0_candidates, allowed_range)

        if 2200 / np.mean(tmp_f0_sequence[int(tmp_range[0]) : int(tmp_range[1]) + 1]) < tmp_range[1] - tmp_range[0]:
            count += 1
            multi_channel_f0[count, :] = tmp_f0_sequence
            range[count, :] = tmp_range

    if count > -1: f0_step3 = MergeF0(multi_channel_f0[0 : count + 1, :], range[0 : count + 1, :], f0_candidates, f0_candidates_score)
    return f0_step3

def FixStep4(f0_step3, threshold):
    f0_step4 = np.empty_like(f0_step3)
    f0_step4[:] = f0_step3

    boundary_list = GetBoundaryList(f0_step3)

    for i in np.arange(1, len(boundary_list) // 2 ):
        distance = boundary_list[2 * i] - boundary_list[2 * i - 1] - 1
        if distance >= threshold: continue

        tmp0 = f0_step3[boundary_list[2 * i - 1]] + 1
        c = ((f0_step3[boundary_list[2 * i]] - 1) - tmp0) / (distance + 1)
        count = 1

        for j in np.arange(boundary_list[2 * i - 1] + 1, boundary_list[2 * i]):
            f0_step4[j] = tmp0 + c * count
            count += 1

    return f0_step4

def ExtendF0(f0, origin, last_point, shift, f0_candidates, allowed_range):
    extended_f0 = np.array(f0)
    tmp_f0 = extended_f0[origin]
    shifted_origin = origin

    count = 0

    if shift == 1: last_point += 1
    elif shift == -1: last_point -= 1

    for i in np.arange(origin, last_point, shift):
        extended_f0[i + shift], _ = SelectBestF0(tmp_f0, f0_candidates[:, i + shift], allowed_range)

        if extended_f0[i + shift] != 0:
            tmp_f0 = extended_f0[i + shift]
            count = 0
            shifted_origin = i + shift
        else: count += + 1

        if count == 4: break

    return extended_f0, shifted_origin

def GetMultiChannelF0(f0, boundary_list):
    multi_channel_f0 = np.zeros((len(boundary_list) // 2, len(f0)))

    for i in np.arange(1, len(boundary_list) // 2 + 1):
        multi_channel_f0[i - 1, boundary_list[(i * 2) - 2] : boundary_list[i * 2 - 1] + 1] = f0[boundary_list[(i * 2) - 2] : boundary_list[(i * 2) - 1] + 1]

    return multi_channel_f0

def MergeF0(multi_channel_f0, range_, f0_candidates, f0_candidates_score):
    sorted_order = np.argsort(range_[:, 0], axis=0, kind='quicksort')
    f0 = multi_channel_f0[sorted_order[0], :]
    range_ = range_.astype(int)

    for i in np.arange(1, multi_channel_f0.shape[0]):
        if range_[sorted_order[i], 0] - range_[sorted_order[0], 1] > 0:
            f0[range_[sorted_order[i], 0] : range_[sorted_order[i], 1] + 1] = multi_channel_f0[sorted_order[i], range_[sorted_order[i], 0] : range_[sorted_order[i], 1] + 1]
            range_[sorted_order[0], 0] = range_[sorted_order[i], 0]
            range_[sorted_order[0], 1] = range_[sorted_order[i], 1]
        else: f0, range_[sorted_order[0], 1] = MergeF0Sub(f0, range_[sorted_order[0], 0], range_[sorted_order[0], 1], multi_channel_f0[sorted_order[i], :], range_[sorted_order[i], 0], range_[sorted_order[i], 1], f0_candidates, f0_candidates_score)
            
    return f0

def MergeF0Sub(f0_1, st1, ed1, f0_2, st2, ed2, f0_candidates, f0_candidates_score):
    merged_f0 = copy.deepcopy(f0_1)
    st1, st2, ed1, ed2 = int(st1), int(st2), int(ed1), int(ed2)

    if st1 <= st2 and ed1 >= ed2:
        new_ed = ed1
        return merged_f0, new_ed
    
    new_ed = ed2
    score1, score2 = 0, 0

    for i in np.arange(st2, ed1 + 1):
        score1 = score1 + SerachScore(f0_1[i], f0_candidates[:, i], f0_candidates_score[:, i])
        score2 = score2 + SerachScore(f0_2[i], f0_candidates[:, i], f0_candidates_score[:, i])

    if score1 > score2: merged_f0[ed1 : ed2 + 1] = f0_2[ed1 : ed2 + 1]
    else: merged_f0[st2 : ed2 + 1] = f0_2[st2 : ed2 + 1]

    return merged_f0, new_ed

def SerachScore(f0, f0_candidates, f0_candidates_score):
    score = 0

    for i in range(f0_candidates.shape[0]):
        if f0 == f0_candidates[i] and score < f0_candidates_score[i]: score = f0_candidates_score[i]

    return score

def GetF0Candidates(neg_loc, neg_f0, pos_loc, pos_f0, peak_loc, peak_f0, dip_loc, dip_f0, temporal_positions):
    interpolated_f0_list = np.zeros((4, np.size(temporal_positions)))

    if max(0, np.size(neg_loc) - 2) * max(0, np.size(pos_loc) - 2) * max(0, np.size(peak_loc) - 2) * max(0, np.size(dip_f0) - 2) > 0:
        interpolated_f0_list[0, :] = interp1d(neg_loc, neg_f0, fill_value='extrapolate')(temporal_positions)
        interpolated_f0_list[1, :] = interp1d(pos_loc, pos_f0, fill_value='extrapolate')(temporal_positions)

        interpolated_f0_list[2, :] = interp1d(peak_loc, peak_f0, fill_value='extrapolate')(temporal_positions)
        interpolated_f0_list[3, :] = interp1d(dip_loc, dip_f0, fill_value='extrapolate')(temporal_positions)

        interpolated_f0 = np.mean(interpolated_f0_list, axis=0)
    else: interpolated_f0 = temporal_positions * 0

    return interpolated_f0

def SmoothF0(f0):
    smoothed_f0 = np.append(np.append(np.zeros(300), f0), np.zeros(300))
    boundary_list = GetBoundaryList(smoothed_f0)

    for i in np.arange(1, len(boundary_list) // 2 + 1):
        tmp_f0_contour = FilterF0(GetMultiChannelF0(smoothed_f0, boundary_list)[i - 1, :], boundary_list[i * 2 - 2], boundary_list[i * 2 - 1], np.array([0.0078202080334971724, 0.015640416066994345, 0.007822412033497172]), np.array([1.0, -1.7347257688092754, 0.76600660094326412]))
        smoothed_f0[boundary_list[i * 2 - 2] : boundary_list[i * 2 - 1] + 1] = tmp_f0_contour[boundary_list[i * 2 - 2] : boundary_list[i * 2 - 1] + 1]

    return smoothed_f0[300 : len(smoothed_f0) - 300]

def FilterF0(f0_contour, st, ed, b, a):
    smoothed_f0 = copy.deepcopy(f0_contour)
    smoothed_f0[0 : st] = smoothed_f0[st]
    smoothed_f0[ed + 1: ] = smoothed_f0[ed]
    smoothed_f0 = lfilter(b, a, lfilter(b, a, smoothed_f0, axis=0)[-1 : : -1], axis=0)[-1 : : -1]
    smoothed_f0[0 : st] = smoothed_f0[ed + 1: ] = 0

    return smoothed_f0

def nuttall(N):
    return np.squeeze(np.asarray(np.array([0.355768, -0.487396, 0.144232, -0.012604]) @ np.cos(np.matrix([0,1,2,3]).T @ np.asmatrix(np.arange(N) * 2 * math.pi / (N-1)))))

def GetBoundaryList(f0):
    vuv = np.array(f0)
    vuv[vuv != 0] = 1
    vuv[0] = vuv[-1] = 0

    boundary_list = np.where(np.diff(vuv) != 0)[0]
    boundary_list[0:: 2] += 1

    return boundary_list

def decimate_matlab(x, q, n=None, axis=-1):
    if not isinstance(q, int): raise TypeError
    if n is not None and not isinstance(n, int): raise TypeError

    system = signal.dlti(*signal.cheby1(n, 0.05, 0.8 / q))
    y = signal.filtfilt(system.num, system.den, x, axis=axis, padlen=3 * (max(len(system.den), len(system.num)) - 1))
    nd = len(y)

    return y[int(q - (q * np.ceil(nd / q) - nd)) - 1::q]