File size: 7,158 Bytes
1e4a2ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import os
import gc
import sys
import torch
import librosa

import numpy as np
import soundfile as sf

from pydub import AudioSegment

sys.path.append(os.getcwd())

from main.library import opencl
from main.library.uvr5_lib.spec_utils import normalize

class CommonSeparator:
    VOCAL_STEM = "Vocals"
    INST_STEM = "Instrumental"
    OTHER_STEM = "Other"
    BASS_STEM = "Bass"
    DRUM_STEM = "Drums"
    GUITAR_STEM = "Guitar"
    PIANO_STEM = "Piano"
    PRIMARY_STEM = "Primary Stem"
    SECONDARY_STEM = "Secondary Stem"
    LEAD_VOCAL_STEM = "lead_only"
    BV_VOCAL_STEM = "backing_only"
    NO_STEM = "No "
    STEM_PAIR_MAPPER = {VOCAL_STEM: INST_STEM, INST_STEM: VOCAL_STEM, LEAD_VOCAL_STEM: BV_VOCAL_STEM, BV_VOCAL_STEM: LEAD_VOCAL_STEM, PRIMARY_STEM: SECONDARY_STEM}

    def __init__(self, config):
        self.logger = config.get("logger")
        self.torch_device = config.get("torch_device")
        self.torch_device_cpu = config.get("torch_device_cpu")
        self.torch_device_mps = config.get("torch_device_mps")
        self.onnx_execution_provider = config.get("onnx_execution_provider")
        self.model_name = config.get("model_name")
        self.model_path = config.get("model_path")
        self.model_data = config.get("model_data")
        self.output_dir = config.get("output_dir")
        self.output_format = config.get("output_format")
        self.output_bitrate = config.get("output_bitrate")
        self.normalization_threshold = config.get("normalization_threshold")
        self.enable_denoise = config.get("enable_denoise")
        self.output_single_stem = config.get("output_single_stem")
        self.invert_using_spec = config.get("invert_using_spec")
        self.sample_rate = config.get("sample_rate")
        self.primary_stem_name = None
        self.secondary_stem_name = None

        if "training" in self.model_data and "instruments" in self.model_data["training"]:
            instruments = self.model_data["training"]["instruments"]
            if instruments:
                self.primary_stem_name = instruments[0]
                self.secondary_stem_name = instruments[1] if len(instruments) > 1 else self.secondary_stem(self.primary_stem_name)

        if self.primary_stem_name is None:
            self.primary_stem_name = self.model_data.get("primary_stem", "Vocals")
            self.secondary_stem_name = self.secondary_stem(self.primary_stem_name)

        self.is_karaoke = self.model_data.get("is_karaoke", False)
        self.is_bv_model = self.model_data.get("is_bv_model", False)
        self.bv_model_rebalance = self.model_data.get("is_bv_model_rebalanced", 0)
        self.audio_file_path = None
        self.audio_file_base = None
        self.primary_source = None
        self.secondary_source = None
        self.primary_stem_output_path = None
        self.secondary_stem_output_path = None
        self.cached_sources_map = {}

    def secondary_stem(self, primary_stem):
        primary_stem = primary_stem if primary_stem else self.NO_STEM
        return self.STEM_PAIR_MAPPER[primary_stem] if primary_stem in self.STEM_PAIR_MAPPER else primary_stem.replace(self.NO_STEM, "") if self.NO_STEM in primary_stem else f"{self.NO_STEM}{primary_stem}"

    def separate(self, audio_file_path):
        pass

    def final_process(self, stem_path, source, stem_name):
        self.write_audio(stem_path, source)
        return {stem_name: source}

    def cached_sources_clear(self):
        self.cached_sources_map = {}

    def cached_source_callback(self, model_architecture, model_name=None):
        model, sources = None, None
        mapper = self.cached_sources_map[model_architecture]
        for key, value in mapper.items():
            if model_name in key:
                model = key
                sources = value

        return model, sources

    def cached_model_source_holder(self, model_architecture, sources, model_name=None):
        self.cached_sources_map[model_architecture] = {**self.cached_sources_map.get(model_architecture, {}), **{model_name: sources}}

    def prepare_mix(self, mix):
        if not isinstance(mix, np.ndarray):
            mix, _ = librosa.load(mix, mono=False, sr=self.sample_rate)
        else:
            mix = mix.T

        if mix.ndim == 1:
            mix = np.asfortranarray([mix, mix])

        return mix

    def write_audio(self, stem_path, stem_source):
        duration_seconds = librosa.get_duration(y=librosa.load(self.audio_file_path, sr=None)[0])
        duration_hours = duration_seconds / 3600

        if duration_hours >= 1:
            self.write_audio_soundfile(stem_path, stem_source)
        else:
            self.write_audio_pydub(stem_path, stem_source)

    def write_audio_pydub(self, stem_path, stem_source):
        stem_source = normalize(wave=stem_source, max_peak=self.normalization_threshold)

        if np.max(np.abs(stem_source)) < 1e-6: return

        if self.output_dir:
            os.makedirs(self.output_dir, exist_ok=True)
            stem_path = os.path.join(self.output_dir, stem_path)

        if stem_source.dtype != np.int16: stem_source = (stem_source * 32767).astype(np.int16)
        stem_source_interleaved = np.empty((2 * stem_source.shape[0],), dtype=np.int16)
        stem_source_interleaved[0::2] = stem_source[:, 0] 
        stem_source_interleaved[1::2] = stem_source[:, 1]

        audio_segment = AudioSegment(stem_source_interleaved.tobytes(), frame_rate=self.sample_rate, sample_width=stem_source.dtype.itemsize, channels=2)
        file_format = stem_path.lower().split(".")[-1]

        if file_format == "m4a": file_format = "mp4"
        elif file_format == "mka": file_format = "matroska"

        audio_segment.export(stem_path, format=file_format, bitrate="320k" if file_format == "mp3" and self.output_bitrate is None else self.output_bitrate)

    def write_audio_soundfile(self, stem_path, stem_source):
        if stem_source.shape[1] == 2:
            if stem_source.flags["F_CONTIGUOUS"]: stem_source = np.ascontiguousarray(stem_source)
            else:
                stereo_interleaved = np.empty((2 * stem_source.shape[0],), dtype=np.int16)
                stereo_interleaved[0::2] = stem_source[:, 0]
                stereo_interleaved[1::2] = stem_source[:, 1]
                stem_source = stereo_interleaved

        sf.write(stem_path, stem_source, self.sample_rate)

    def clear_gpu_cache(self):
        gc.collect()

        if self.torch_device == torch.device("mps"): torch.mps.empty_cache()
        elif self.torch_device == torch.device("cuda"): torch.cuda.empty_cache()
        elif opencl.torch_available and self.torch_device == torch.device("ocl"): opencl.pytorch_ocl.empty_cache()

    def clear_file_specific_paths(self):
        self.audio_file_path = None
        self.audio_file_base = None
        self.primary_source = None
        self.secondary_source = None
        self.primary_stem_output_path = None
        self.secondary_stem_output_path = None