File size: 5,297 Bytes
1e4a2ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
import torch
import torch.nn as nn
class ConvBlockRes(nn.Module):
def __init__(self, in_channels, out_channels, momentum=0.01):
super(ConvBlockRes, self).__init__()
self.conv = nn.Sequential(nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False), nn.BatchNorm2d(out_channels, momentum=momentum), nn.ReLU(), nn.Conv2d(in_channels=out_channels, out_channels=out_channels, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False), nn.BatchNorm2d(out_channels, momentum=momentum), nn.ReLU())
if in_channels != out_channels:
self.shortcut = nn.Conv2d(in_channels, out_channels, (1, 1))
self.is_shortcut = True
else: self.is_shortcut = False
def forward(self, x):
return (self.conv(x) + self.shortcut(x)) if self.is_shortcut else (self.conv(x) + x)
class ResEncoderBlock(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, n_blocks=1, momentum=0.01):
super(ResEncoderBlock, self).__init__()
self.n_blocks = n_blocks
self.conv = nn.ModuleList()
self.conv.append(ConvBlockRes(in_channels, out_channels, momentum))
for _ in range(n_blocks - 1):
self.conv.append(ConvBlockRes(out_channels, out_channels, momentum))
self.kernel_size = kernel_size
if self.kernel_size is not None: self.pool = nn.AvgPool2d(kernel_size=kernel_size)
def forward(self, x):
for i in range(self.n_blocks):
x = self.conv[i](x)
if self.kernel_size is not None: return x, self.pool(x)
else: return x
class Encoder(nn.Module):
def __init__(self, in_channels, in_size, n_encoders, kernel_size, n_blocks, out_channels=16, momentum=0.01):
super(Encoder, self).__init__()
self.n_encoders = n_encoders
self.bn = nn.BatchNorm2d(in_channels, momentum=momentum)
self.layers = nn.ModuleList()
for _ in range(self.n_encoders):
self.layers.append(ResEncoderBlock(in_channels, out_channels, kernel_size, n_blocks, momentum=momentum))
in_channels = out_channels
out_channels *= 2
in_size //= 2
self.out_size = in_size
self.out_channel = out_channels
def forward(self, x):
concat_tensors = []
x = self.bn(x)
for layer in self.layers:
t, x = layer(x)
concat_tensors.append(t)
return x, concat_tensors
class Intermediate(nn.Module):
def __init__(self, in_channels, out_channels, n_inters, n_blocks, momentum=0.01):
super(Intermediate, self).__init__()
self.layers = nn.ModuleList()
self.layers.append(ResEncoderBlock(in_channels, out_channels, None, n_blocks, momentum))
for _ in range(n_inters - 1):
self.layers.append(ResEncoderBlock(out_channels, out_channels, None, n_blocks, momentum))
def forward(self, x):
for layer in self.layers:
x = layer(x)
return x
class ResDecoderBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride, n_blocks=1, momentum=0.01):
super(ResDecoderBlock, self).__init__()
out_padding = (0, 1) if stride == (1, 2) else (1, 1)
self.conv1 = nn.Sequential(nn.ConvTranspose2d(in_channels=in_channels, out_channels=out_channels, kernel_size=(3, 3), stride=stride, padding=(1, 1), output_padding=out_padding, bias=False), nn.BatchNorm2d(out_channels, momentum=momentum), nn.ReLU())
self.conv2 = nn.ModuleList()
self.conv2.append(ConvBlockRes(out_channels * 2, out_channels, momentum))
for _ in range(n_blocks - 1):
self.conv2.append(ConvBlockRes(out_channels, out_channels, momentum))
def forward(self, x, concat_tensor):
x = torch.cat((self.conv1(x), concat_tensor), dim=1)
for conv2 in self.conv2:
x = conv2(x)
return x
class Decoder(nn.Module):
def __init__(self, in_channels, n_decoders, stride, n_blocks, momentum=0.01):
super(Decoder, self).__init__()
self.layers = nn.ModuleList()
for _ in range(n_decoders):
out_channels = in_channels // 2
self.layers.append(ResDecoderBlock(in_channels, out_channels, stride, n_blocks, momentum))
in_channels = out_channels
def forward(self, x, concat_tensors):
for i, layer in enumerate(self.layers):
x = layer(x, concat_tensors[-1 - i])
return x
class DeepUnet(nn.Module):
def __init__(self, kernel_size, n_blocks, en_de_layers=5, inter_layers=4, in_channels=1, en_out_channels=16):
super(DeepUnet, self).__init__()
self.encoder = Encoder(in_channels, 128, en_de_layers, kernel_size, n_blocks, en_out_channels)
self.intermediate = Intermediate(self.encoder.out_channel // 2, self.encoder.out_channel, inter_layers, n_blocks)
self.decoder = Decoder(self.encoder.out_channel, en_de_layers, kernel_size, n_blocks)
def forward(self, x):
x, concat_tensors = self.encoder(x)
return self.decoder(self.intermediate(x), concat_tensors) |