File size: 16,875 Bytes
1e4a2ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 |
import os
import re
import sys
import math
import torch
import parselmouth
import numba as nb
import numpy as np
from scipy.signal import medfilt
from librosa import yin, pyin, piptrack
sys.path.append(os.getcwd())
from main.library.utils import get_providers
from main.library.predictors.FCN.FCN import FCN
from main.library.predictors.FCPE.FCPE import FCPE
from main.library.predictors.CREPE.CREPE import CREPE
from main.library.predictors.RMVPE.RMVPE import RMVPE
from main.library.predictors.WORLD.WORLD import PYWORLD
from main.app.variables import configs, logger, translations
from main.library.predictors.CREPE.filter import mean, median
from main.library.predictors.WORLD.SWIPE import swipe, stonemask
from main.inference.conversion.utils import autotune_f0, proposal_f0_up_key
@nb.jit(nopython=True)
def post_process(tf0, f0, f0_up_key, manual_x_pad, f0_mel_min, f0_mel_max, manual_f0 = None):
f0 = np.multiply(f0, pow(2, f0_up_key / 12))
if manual_f0 is not None:
replace_f0 = np.interp(
list(
range(
np.round(
(manual_f0[:, 0].max() - manual_f0[:, 0].min()) * tf0 + 1
).astype(np.int16)
)
),
manual_f0[:, 0] * 100,
manual_f0[:, 1]
)
f0[manual_x_pad * tf0 : manual_x_pad * tf0 + len(replace_f0)] = replace_f0[:f0[manual_x_pad * tf0 : manual_x_pad * tf0 + len(replace_f0)].shape[0]]
f0_mel = 1127 * np.log(1 + f0 / 700)
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (f0_mel_max - f0_mel_min) + 1
f0_mel[f0_mel <= 1] = 1
f0_mel[f0_mel > 255] = 255
return np.rint(f0_mel).astype(np.int32), f0
class Generator:
def __init__(self, sample_rate = 16000, hop_length = 160, f0_min = 50, f0_max = 1100, is_half = False, device = "cpu", f0_onnx_mode = False, del_onnx_model = True):
self.sample_rate = sample_rate
self.hop_length = hop_length
self.f0_min = f0_min
self.f0_max = f0_max
self.is_half = is_half
self.device = device
self.providers = get_providers() if f0_onnx_mode else None
self.f0_onnx_mode = f0_onnx_mode
self.del_onnx_model = del_onnx_model
self.window = 160
self.batch_size = 512
self.ref_freqs = [49.00, 51.91, 55.00, 58.27, 61.74, 65.41, 69.30, 73.42, 77.78, 82.41, 87.31, 92.50, 98.00, 103.83, 110.00, 116.54, 123.47, 130.81, 138.59, 146.83, 155.56, 164.81, 174.61, 185.00, 196.00, 207.65, 220.00, 233.08, 246.94, 261.63, 277.18, 293.66, 311.13, 329.63, 349.23, 369.99, 392.00, 415.30, 440.00, 466.16, 493.88, 523.25, 554.37, 587.33, 622.25, 659.25, 698.46, 739.99, 783.99, 830.61, 880.00, 932.33, 987.77, 1046.50]
def calculator(self, x_pad, f0_method, x, f0_up_key = 0, p_len = None, filter_radius = 3, f0_autotune = False, f0_autotune_strength = 1, manual_f0 = None, proposal_pitch = False, proposal_pitch_threshold = 255.0):
if p_len is None: p_len = x.shape[0] // self.window
if "hybrid" in f0_method: logger.debug(translations["hybrid_calc"].format(f0_method=f0_method))
model = self.get_f0_hybrid if "hybrid" in f0_method else self.compute_f0
f0 = model(f0_method, x, p_len, filter_radius if filter_radius % 2 != 0 else filter_radius + 1)
if isinstance(f0, tuple): f0 = f0[0]
if proposal_pitch:
up_key = proposal_f0_up_key(f0, proposal_pitch_threshold, configs["limit_f0"])
logger.debug(translations["proposal_f0"].format(up_key=up_key))
f0_up_key += up_key
if f0_autotune:
logger.debug(translations["startautotune"])
f0 = autotune_f0(self.ref_freqs, f0, f0_autotune_strength)
return post_process(
self.sample_rate // self.window,
f0,
f0_up_key,
x_pad,
1127 * math.log(1 + self.f0_min / 700),
1127 * math.log(1 + self.f0_max / 700),
manual_f0
)
def _resize_f0(self, x, target_len):
source = np.array(x)
source[source < 0.001] = np.nan
return np.nan_to_num(
np.interp(
np.arange(0, len(source) * target_len, len(source)) / target_len,
np.arange(0, len(source)),
source
)
)
def compute_f0(self, f0_method, x, p_len, filter_radius):
return {
"pm-ac": lambda: self.get_f0_pm(x, p_len, filter_radius=filter_radius, mode="ac"),
"pm-cc": lambda: self.get_f0_pm(x, p_len, filter_radius=filter_radius, mode="cc"),
"pm-shs": lambda: self.get_f0_pm(x, p_len, filter_radius=filter_radius, mode="shs"),
"dio": lambda: self.get_f0_pyworld(x, p_len, filter_radius, "dio"),
"mangio-crepe-tiny": lambda: self.get_f0_mangio_crepe(x, p_len, "tiny"),
"mangio-crepe-small": lambda: self.get_f0_mangio_crepe(x, p_len, "small"),
"mangio-crepe-medium": lambda: self.get_f0_mangio_crepe(x, p_len, "medium"),
"mangio-crepe-large": lambda: self.get_f0_mangio_crepe(x, p_len, "large"),
"mangio-crepe-full": lambda: self.get_f0_mangio_crepe(x, p_len, "full"),
"crepe-tiny": lambda: self.get_f0_crepe(x, p_len, "tiny", filter_radius=filter_radius),
"crepe-small": lambda: self.get_f0_crepe(x, p_len, "small", filter_radius=filter_radius),
"crepe-medium": lambda: self.get_f0_crepe(x, p_len, "medium", filter_radius=filter_radius),
"crepe-large": lambda: self.get_f0_crepe(x, p_len, "large", filter_radius=filter_radius),
"crepe-full": lambda: self.get_f0_crepe(x, p_len, "full", filter_radius=filter_radius),
"fcpe": lambda: self.get_f0_fcpe(x, p_len, filter_radius=filter_radius),
"fcpe-legacy": lambda: self.get_f0_fcpe(x, p_len, legacy=True, filter_radius=filter_radius),
"rmvpe": lambda: self.get_f0_rmvpe(x, p_len, filter_radius=filter_radius),
"rmvpe-legacy": lambda: self.get_f0_rmvpe(x, p_len, legacy=True, filter_radius=filter_radius),
"harvest": lambda: self.get_f0_pyworld(x, p_len, filter_radius, "harvest"),
"yin": lambda: self.get_f0_librosa(x, p_len, mode="yin"),
"pyin": lambda: self.get_f0_librosa(x, p_len, mode="pyin"),
"piptrack": lambda: self.get_f0_librosa(x, p_len, mode="piptrack"),
"swipe": lambda: self.get_f0_swipe(x, p_len, filter_radius=filter_radius),
"fcn": lambda: self.get_f0_fcn(x, p_len, filter_radius=filter_radius)
}[f0_method]()
def get_f0_hybrid(self, methods_str, x, p_len, filter_radius):
methods_str = re.search("hybrid\[(.+)\]", methods_str)
if methods_str: methods = [method.strip() for method in methods_str.group(1).split("+")]
f0_computation_stack, resampled_stack = [], []
x = x.astype(np.float32)
x /= np.quantile(np.abs(x), 0.999)
for method in methods:
f0 = None
f0 = self.compute_f0(method, x, p_len, filter_radius)
f0_computation_stack.append(f0)
for f0 in f0_computation_stack:
resampled_stack.append(
np.interp(
np.linspace(0, len(f0), p_len),
np.arange(len(f0)),
f0
)
)
return resampled_stack[0] if len(resampled_stack) == 1 else np.nanmedian(np.vstack(resampled_stack), axis=0)
def get_f0_pm(self, x, p_len, filter_radius=3, mode="ac"):
model = parselmouth.Sound(
x,
self.sample_rate
)
time_step = self.window / self.sample_rate * 1000 / 1000
model_mode = {"ac": model.to_pitch_ac, "cc": model.to_pitch_cc, "shs": model.to_pitch_shs}.get(mode, model.to_pitch_ac)
if mode != "shs":
f0 = (
model_mode(
time_step=time_step,
voicing_threshold=filter_radius / 10 * 2,
pitch_floor=self.f0_min,
pitch_ceiling=self.f0_max
).selected_array["frequency"]
)
else:
f0 = (
model_mode(
time_step=time_step,
minimum_pitch=self.f0_min,
maximum_frequency_component=self.f0_max
).selected_array["frequency"]
)
pad_size = (p_len - len(f0) + 1) // 2
if pad_size > 0 or p_len - len(f0) - pad_size > 0: f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant")
return f0
def get_f0_mangio_crepe(self, x, p_len, model="full"):
if not hasattr(self, "mangio_crepe"):
self.mangio_crepe = CREPE(
os.path.join(
configs["predictors_path"],
f"crepe_{model}.{'onnx' if self.f0_onnx_mode else 'pth'}"
),
model_size=model,
hop_length=self.hop_length,
batch_size=self.hop_length * 2,
f0_min=self.f0_min,
f0_max=self.f0_max,
device=self.device,
sample_rate=self.sample_rate,
providers=self.providers,
onnx=self.f0_onnx_mode,
return_periodicity=False
)
x = x.astype(np.float32)
x /= np.quantile(np.abs(x), 0.999)
audio = torch.unsqueeze(torch.from_numpy(x).to(self.device, copy=True), dim=0)
if audio.ndim == 2 and audio.shape[0] > 1: audio = torch.mean(audio, dim=0, keepdim=True).detach()
f0 = self.mangio_crepe.compute_f0(audio.detach(), pad=True)
if self.f0_onnx_mode and self.del_onnx_model: del self.mangio_crepe.model, self.mangio_crepe
return self._resize_f0(f0.squeeze(0).cpu().float().numpy(), p_len)
def get_f0_crepe(self, x, p_len, model="full", filter_radius=3):
if not hasattr(self, "crepe"):
self.crepe = CREPE(
os.path.join(
configs["predictors_path"],
f"crepe_{model}.{'onnx' if self.f0_onnx_mode else 'pth'}"
),
model_size=model,
hop_length=self.hop_length,
batch_size=self.batch_size,
f0_min=self.f0_min,
f0_max=self.f0_max,
device=self.device,
sample_rate=self.sample_rate,
providers=self.providers,
onnx=self.f0_onnx_mode,
return_periodicity=True
)
f0, pd = self.crepe.compute_f0(torch.tensor(np.copy(x))[None].float(), pad=True)
if self.f0_onnx_mode and self.del_onnx_model: del self.crepe.model, self.crepe
f0, pd = mean(f0, filter_radius), median(pd, filter_radius)
f0[pd < 0.1] = 0
return self._resize_f0(f0[0].cpu().numpy(), p_len)
def get_f0_fcpe(self, x, p_len, legacy=False, filter_radius=3):
if not hasattr(self, "fcpe"):
self.fcpe = FCPE(
configs,
os.path.join(
configs["predictors_path"],
("fcpe_legacy" if legacy else "fcpe") + (".onnx" if self.f0_onnx_mode else ".pt")
),
hop_length=self.hop_length,
f0_min=self.f0_min,
f0_max=self.f0_max,
dtype=torch.float32,
device=self.device,
sample_rate=self.sample_rate,
threshold=(filter_radius / 100) if legacy else (filter_radius / 1000 * 2),
providers=self.providers,
onnx=self.f0_onnx_mode,
legacy=legacy
)
f0 = self.fcpe.compute_f0(x, p_len)
if self.f0_onnx_mode and self.del_onnx_model: del self.fcpe.model.model, self.fcpe
return f0
def get_f0_rmvpe(self, x, p_len, legacy=False, filter_radius=3):
if not hasattr(self, "rmvpe"):
self.rmvpe = RMVPE(
os.path.join(
configs["predictors_path"],
"rmvpe" + (".onnx" if self.f0_onnx_mode else ".pt")
),
is_half=self.is_half,
device=self.device,
onnx=self.f0_onnx_mode,
providers=self.providers
)
filter_radius = filter_radius / 100
f0 = self.rmvpe.infer_from_audio_with_pitch(x, thred=filter_radius, f0_min=self.f0_min, f0_max=self.f0_max) if legacy else self.rmvpe.infer_from_audio(x, thred=filter_radius)
if self.f0_onnx_mode and self.del_onnx_model: del self.rmvpe.model, self.rmvpe
return self._resize_f0(f0, p_len)
def get_f0_pyworld(self, x, p_len, filter_radius, model="harvest"):
if not hasattr(self, "pw"): self.pw = PYWORLD(configs)
x = x.astype(np.double)
pw = self.pw.harvest if model == "harvest" else self.pw.dio
f0, t = pw(
x,
fs=self.sample_rate,
f0_ceil=self.f0_max,
f0_floor=self.f0_min,
frame_period=1000 * self.window / self.sample_rate
)
f0 = self.pw.stonemask(
x,
self.sample_rate,
t,
f0
)
if filter_radius > 2 and model == "harvest": f0 = medfilt(f0, filter_radius)
elif model == "dio":
for index, pitch in enumerate(f0):
f0[index] = round(pitch, 1)
return self._resize_f0(f0, p_len)
def get_f0_swipe(self, x, p_len, filter_radius=3):
f0, t = swipe(
x.astype(np.float32),
self.sample_rate,
f0_floor=self.f0_min,
f0_ceil=self.f0_max,
frame_period=1000 * self.window / self.sample_rate,
sTHR=filter_radius / 10
)
return self._resize_f0(
stonemask(
x,
self.sample_rate,
t,
f0
),
p_len
)
def get_f0_librosa(self, x, p_len, mode="yin"):
if mode != "piptrack":
self.if_yin = mode == "yin"
self.yin = yin if self.if_yin else pyin
f0 = self.yin(
x.astype(np.float32),
sr=self.sample_rate,
fmin=self.f0_min,
fmax=self.f0_max,
hop_length=self.hop_length
)
if not self.if_yin: f0 = f0[0]
else:
pitches, magnitudes = piptrack(
y=x.astype(np.float32),
sr=self.sample_rate,
fmin=self.f0_min,
fmax=self.f0_max,
hop_length=self.hop_length,
)
max_indexes = np.argmax(magnitudes, axis=0)
f0 = pitches[max_indexes, range(magnitudes.shape[1])]
return self._resize_f0(f0, p_len)
def get_f0_fcn(self, x, p_len, filter_radius=3):
if not hasattr(self, "fcn"):
self.fcn = FCN(
os.path.join(
configs["predictors_path"],
f"fcn.{'onnx' if self.f0_onnx_mode else 'pt'}"
),
hop_length=self.hop_length,
batch_size=self.batch_size,
f0_min=self.f0_min,
f0_max=self.f0_max,
device=self.device,
sample_rate=self.sample_rate,
providers=self.providers,
onnx=self.f0_onnx_mode,
)
x = x.astype(np.float32)
x /= np.quantile(np.abs(x), 0.999)
audio = torch.unsqueeze(torch.from_numpy(x).to(self.device, copy=True), dim=0)
if audio.ndim == 2 and audio.shape[0] > 1: audio = torch.mean(audio, dim=0, keepdim=True).detach()
f0, pd = self.fcn.compute_f0(audio.detach())
if self.f0_onnx_mode and self.del_onnx_model: del self.fcn.model, self.fcn
f0, pd = mean(f0, filter_radius), median(pd, filter_radius)
f0[pd < 0.1] = 0
f0 = f0[0].cpu().numpy()
for index, pitch in enumerate(f0):
f0[index] = pitch * 2.0190475097926434038940242706786
return self._resize_f0(f0, p_len) |