File size: 15,524 Bytes
1e4a2ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
import os
import sys
import torch

import numpy as np
import torch.utils.data as tdata

sys.path.append(os.getcwd())

from main.app.variables import translations
from main.inference.training.mel_processing import spectrogram_torch
from main.inference.training.utils import load_filepaths_and_text, load_wav_to_torch

class TextAudioLoaderMultiNSFsid(tdata.Dataset):
    def __init__(self, hparams, energy=False):
        self.audiopaths_and_text = load_filepaths_and_text(hparams.training_files)
        self.max_wav_value = hparams.max_wav_value
        self.sample_rate = hparams.sample_rate
        self.filter_length = hparams.filter_length
        self.hop_length = hparams.hop_length
        self.win_length = hparams.win_length
        self.sample_rate = hparams.sample_rate
        self.min_text_len = getattr(hparams, "min_text_len", 1)
        self.max_text_len = getattr(hparams, "max_text_len", 5000)
        self.energy = energy
        self._filter()

    def _filter(self):
        audiopaths_and_text_new, lengths = [], []

        for item in self.audiopaths_and_text:
            audiopath = item[0]
            text = item[1]

            if self.min_text_len <= len(text) <= self.max_text_len:
                audiopaths_and_text_new.append(item)
                lengths.append(os.path.getsize(audiopath) // (3 * self.hop_length))

        self.audiopaths_and_text = audiopaths_and_text_new
        self.lengths = lengths

    def get_sid(self, sid):
        try:
            sid = torch.LongTensor([int(sid)])
        except ValueError:
            sid = torch.LongTensor([0])

        return sid

    def get_audio_text_pair(self, audiopath_and_text):
        if self.energy:
            phone, pitch, pitchf, energy = self.get_labels(audiopath_and_text[1], audiopath_and_text[2], audiopath_and_text[3], audiopath_and_text[4])
            spec, wav = self.get_audio(audiopath_and_text[0])
            dv = self.get_sid(audiopath_and_text[5])
        else:
            phone, pitch, pitchf, _ = self.get_labels(audiopath_and_text[1], audiopath_and_text[2], audiopath_and_text[3])
            spec, wav = self.get_audio(audiopath_and_text[0])
            dv = self.get_sid(audiopath_and_text[4])

        len_phone = phone.size()[0]
        len_spec = spec.size()[-1]

        if len_phone != len_spec:
            len_min = min(len_phone, len_spec)
            len_wav = len_min * self.hop_length
            spec, wav, phone = spec[:, :len_min], wav[:, :len_wav], phone[:len_min, :]
            pitch, pitchf = pitch[:len_min], pitchf[:len_min]
            if self.energy: energy = energy[:len_min]

        return (spec, wav, phone, pitch, pitchf, dv, energy) if self.energy else (spec, wav, phone, pitch, pitchf, dv)

    def get_labels(self, phone, pitch, pitchf, energy=None):
        phone = np.repeat(np.load(phone), 2, axis=0)
        n_num = min(phone.shape[0], 900)
        return torch.FloatTensor(phone[:n_num, :]), torch.LongTensor(np.load(pitch)[:n_num]), torch.FloatTensor(np.load(pitchf)[:n_num]), torch.FloatTensor(np.load(energy)[:n_num]) if energy else None

    def get_audio(self, filename):
        audio, sample_rate = load_wav_to_torch(filename)
        if sample_rate != self.sample_rate: raise ValueError(translations["sr_does_not_match"].format(sample_rate=sample_rate, sample_rate2=self.sample_rate))

        audio_norm = audio.unsqueeze(0)
        spec_filename = filename.replace(".wav", ".spec.pt")

        if os.path.exists(spec_filename):
            try:
                spec = torch.load(spec_filename, weights_only=True)
            except Exception:
                spec = torch.squeeze(spectrogram_torch(audio_norm, self.filter_length, self.hop_length, self.win_length, center=False), 0)
                torch.save(spec, spec_filename, _use_new_zipfile_serialization=False)
        else: 
            spec = torch.squeeze(spectrogram_torch(audio_norm, self.filter_length, self.hop_length, self.win_length, center=False), 0)
            torch.save(spec, spec_filename, _use_new_zipfile_serialization=False)

        return spec, audio_norm

    def __getitem__(self, index):
        return self.get_audio_text_pair(self.audiopaths_and_text[index])

    def __len__(self):
        return len(self.audiopaths_and_text)

class TextAudioCollateMultiNSFsid:
    def __init__(self, return_ids=False, energy=False):
        self.return_ids = return_ids
        self.energy = energy

    def __call__(self, batch):
        _, ids_sorted_decreasing = torch.sort(torch.LongTensor([x[0].size(1) for x in batch]), dim=0, descending=True)
        spec_lengths, wave_lengths = torch.LongTensor(len(batch)), torch.LongTensor(len(batch))
        spec_padded, wave_padded = torch.FloatTensor(len(batch), batch[0][0].size(0), max([x[0].size(1) for x in batch])), torch.FloatTensor(len(batch), 1, max([x[1].size(1) for x in batch]))
        spec_padded.zero_()
        wave_padded.zero_()

        max_phone_len = max([x[2].size(0) for x in batch])
        phone_lengths, phone_padded = torch.LongTensor(len(batch)), torch.FloatTensor(len(batch), max_phone_len, batch[0][2].shape[1])
        pitch_padded, pitchf_padded = torch.LongTensor(len(batch), max_phone_len), torch.FloatTensor(len(batch), max_phone_len)
        phone_padded.zero_()
        pitch_padded.zero_()
        pitchf_padded.zero_()
        sid = torch.LongTensor(len(batch))

        if self.energy:
            energy_padded = torch.FloatTensor(len(batch), max_phone_len)
            energy_padded.zero_()

        for i in range(len(ids_sorted_decreasing)):
            row = batch[ids_sorted_decreasing[i]]
            spec = row[0]
            spec_padded[i, :, : spec.size(1)] = spec
            spec_lengths[i] = spec.size(1)
            wave = row[1]
            wave_padded[i, :, : wave.size(1)] = wave
            wave_lengths[i] = wave.size(1)
            phone = row[2]
            phone_padded[i, : phone.size(0), :] = phone
            phone_lengths[i] = phone.size(0)
            pitch = row[3]
            pitch_padded[i, : pitch.size(0)] = pitch
            pitchf = row[4]
            pitchf_padded[i, : pitchf.size(0)] = pitchf
            sid[i] = row[5]

            if self.energy:
                energy = row[6]
                energy_padded[i, : energy.size(0)] = energy

        return (phone_padded, phone_lengths, pitch_padded, pitchf_padded, spec_padded, spec_lengths, wave_padded, wave_lengths, sid, energy_padded) if self.energy else (phone_padded, phone_lengths, pitch_padded, pitchf_padded, spec_padded, spec_lengths, wave_padded, wave_lengths, sid)

class TextAudioLoader(tdata.Dataset):
    def __init__(self, hparams, energy=False):
        self.audiopaths_and_text = load_filepaths_and_text(hparams.training_files)
        self.max_wav_value = hparams.max_wav_value
        self.sample_rate = hparams.sample_rate
        self.filter_length = hparams.filter_length
        self.hop_length = hparams.hop_length
        self.win_length = hparams.win_length
        self.sample_rate = hparams.sample_rate
        self.min_text_len = getattr(hparams, "min_text_len", 1)
        self.max_text_len = getattr(hparams, "max_text_len", 5000)
        self.energy = energy
        self._filter()

    def _filter(self):
        audiopaths_and_text_new, lengths = [], []

        for item in self.audiopaths_and_text:
            audiopath = item[0]
            text = item[1]

            if self.min_text_len <= len(text) and len(text) <= self.max_text_len:
                audiopaths_and_text_new.append(item)
                lengths.append(os.path.getsize(audiopath) // (3 * self.hop_length))

        self.audiopaths_and_text = audiopaths_and_text_new
        self.lengths = lengths

    def get_sid(self, sid):
        try:
            sid = torch.LongTensor([int(sid)])
        except ValueError:
            sid = torch.LongTensor([0])

        return sid

    def get_audio_text_pair(self, audiopath_and_text):
        if self.energy:
            phone, energy = self.get_labels(audiopath_and_text[1], audiopath_and_text[2])
            spec, wav = self.get_audio(audiopath_and_text[0])
            dv = self.get_sid(audiopath_and_text[3])
        else:            
            phone, _ = self.get_labels(audiopath_and_text[1])
            spec, wav = self.get_audio(audiopath_and_text[0])
            dv = self.get_sid(audiopath_and_text[2])

        len_phone = phone.size()[0]
        len_spec = spec.size()[-1]

        if len_phone != len_spec:
            len_min = min(len_phone, len_spec)
            len_wav = len_min * self.hop_length
            spec = spec[:, :len_min]
            wav = wav[:, :len_wav]
            phone = phone[:len_min, :]
            if self.energy: energy = energy[:len_min]

        return (spec, wav, phone, dv, energy) if self.energy else (spec, wav, phone, dv)

    def get_labels(self, phone, energy=None):
        phone = np.repeat(np.load(phone), 2, axis=0)
        n_num = min(phone.shape[0], 900)

        return torch.FloatTensor(phone[:min(phone.shape[0], 900), :]), torch.FloatTensor(np.load(energy)[:n_num]) if energy else None

    def get_audio(self, filename):
        audio, sample_rate = load_wav_to_torch(filename)
        if sample_rate != self.sample_rate: raise ValueError(translations["sr_does_not_match"].format(sample_rate=sample_rate, sample_rate2=self.sample_rate))

        audio_norm = audio.unsqueeze(0)
        spec_filename = filename.replace(".wav", ".spec.pt")

        if os.path.exists(spec_filename):
            try:
                spec = torch.load(spec_filename, weights_only=True)
            except Exception:
                spec = torch.squeeze(spectrogram_torch(audio_norm, self.filter_length, self.hop_length, self.win_length, center=False), 0)
                torch.save(spec, spec_filename, _use_new_zipfile_serialization=False)
        else:
            spec = torch.squeeze(spectrogram_torch(audio_norm, self.filter_length, self.hop_length, self.win_length, center=False), 0)
            torch.save(spec, spec_filename, _use_new_zipfile_serialization=False)

        return spec, audio_norm

    def __getitem__(self, index):
        return self.get_audio_text_pair(self.audiopaths_and_text[index])

    def __len__(self):
        return len(self.audiopaths_and_text)

class TextAudioCollate:
    def __init__(self, return_ids=False, energy=False):
        self.return_ids = return_ids
        self.energy = energy

    def __call__(self, batch):
        _, ids_sorted_decreasing = torch.sort(torch.LongTensor([x[0].size(1) for x in batch]), dim=0, descending=True)
        spec_lengths, wave_lengths = torch.LongTensor(len(batch)), torch.LongTensor(len(batch))
        spec_padded, wave_padded = torch.FloatTensor(len(batch), batch[0][0].size(0), max([x[0].size(1) for x in batch])), torch.FloatTensor(len(batch), 1, max([x[1].size(1) for x in batch]))
        spec_padded.zero_()
        wave_padded.zero_()

        max_phone_len = max([x[2].size(0) for x in batch])
        phone_lengths, phone_padded = torch.LongTensor(len(batch)), torch.FloatTensor(len(batch), max_phone_len, batch[0][2].shape[1])
        phone_padded.zero_()
        sid = torch.LongTensor(len(batch))

        if self.energy:
            energy_padded = torch.FloatTensor(len(batch), max_phone_len)
            energy_padded.zero_()

        for i in range(len(ids_sorted_decreasing)):
            row = batch[ids_sorted_decreasing[i]]
            spec = row[0]
            spec_padded[i, :, : spec.size(1)] = spec
            spec_lengths[i] = spec.size(1)
            wave = row[1]
            wave_padded[i, :, : wave.size(1)] = wave
            wave_lengths[i] = wave.size(1)
            phone = row[2]
            phone_padded[i, : phone.size(0), :] = phone
            phone_lengths[i] = phone.size(0)
            sid[i] = row[3]

            if self.energy:
                energy = row[4]
                energy_padded[i, : energy.size(0)] = energy

        return (phone_padded, phone_lengths, spec_padded, spec_lengths, wave_padded, wave_lengths, sid, energy_padded) if self.energy else (phone_padded, phone_lengths, spec_padded, spec_lengths, wave_padded, wave_lengths, sid)

class DistributedBucketSampler(tdata.distributed.DistributedSampler):
    def __init__(self, dataset, batch_size, boundaries, num_replicas=None, rank=None, shuffle=True):
        super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
        self.lengths = dataset.lengths
        self.batch_size = batch_size
        self.boundaries = boundaries
        self.buckets, self.num_samples_per_bucket = self._create_buckets()
        self.total_size = sum(self.num_samples_per_bucket)
        self.num_samples = self.total_size // self.num_replicas

    def _create_buckets(self):
        buckets = [[] for _ in range(len(self.boundaries) - 1)]

        for i in range(len(self.lengths)):
            idx_bucket = self._bisect(self.lengths[i])
            if idx_bucket != -1: buckets[idx_bucket].append(i)

        for i in range(len(buckets) - 1, -1, -1):  
            if len(buckets[i]) == 0:
                buckets.pop(i)
                self.boundaries.pop(i + 1)

        num_samples_per_bucket = []

        for i in range(len(buckets)):
            len_bucket = len(buckets[i])
            total_batch_size = self.num_replicas * self.batch_size
            num_samples_per_bucket.append(len_bucket + ((total_batch_size - (len_bucket % total_batch_size)) % total_batch_size))

        return buckets, num_samples_per_bucket

    def __iter__(self):
        g = torch.Generator()
        g.manual_seed(self.epoch)
        indices, batches = [], []

        if self.shuffle:
            for bucket in self.buckets:
                indices.append(torch.randperm(len(bucket), generator=g).tolist())
        else:
            for bucket in self.buckets:
                indices.append(list(range(len(bucket))))

        for i in range(len(self.buckets)):
            bucket = self.buckets[i]
            len_bucket = len(bucket)
            ids_bucket = indices[i]
            rem = self.num_samples_per_bucket[i] - len_bucket
            ids_bucket = (ids_bucket + ids_bucket * (rem // len_bucket) + ids_bucket[: (rem % len_bucket)])[self.rank :: self.num_replicas]

            for j in range(len(ids_bucket) // self.batch_size):
                batches.append([bucket[idx] for idx in ids_bucket[j * self.batch_size : (j + 1) * self.batch_size]])

        if self.shuffle: batches = [batches[i] for i in torch.randperm(len(batches), generator=g).tolist()]
        self.batches = batches
        assert len(self.batches) * self.batch_size == self.num_samples

        return iter(self.batches)

    def _bisect(self, x, lo=0, hi=None):
        if hi is None: hi = len(self.boundaries) - 1

        if hi > lo:
            mid = (hi + lo) // 2

            if self.boundaries[mid] < x and x <= self.boundaries[mid + 1]: return mid
            elif x <= self.boundaries[mid]: return self._bisect(x, lo, mid)
            else: return self._bisect(x, mid + 1, hi)
        else: return -1

    def __len__(self):
        return self.num_samples // self.batch_size