File size: 11,650 Bytes
1e4a2ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import os
import sys
import time
import shutil
import codecs
import threading
import subprocess
sys.path.append(os.getcwd())
from main.tools import huggingface
from main.app.core.ui import gr_info, gr_warning
from main.app.variables import python, translations, configs
def if_done(done, p):
while 1:
if p.poll() is None: time.sleep(0.5)
else: break
done[0] = True
def log_read(done, name):
log_file = os.path.join(configs["logs_path"], "app.log")
f = open(log_file, "w", encoding="utf-8")
f.close()
while 1:
with open(log_file, "r", encoding="utf-8") as f:
yield "".join(line for line in f.readlines() if "DEBUG" not in line and name in line and line.strip() != "")
time.sleep(1)
if done[0]: break
with open(log_file, "r", encoding="utf-8") as f:
log = "".join(line for line in f.readlines() if "DEBUG" not in line and line.strip() != "")
yield log
def create_dataset(input_audio, output_dataset, clean_dataset, clean_strength, separator_reverb, kim_vocals_version, overlap, segments_size, denoise_mdx, skip, skip_start, skip_end, hop_length, batch_size, sample_rate):
version = 1 if kim_vocals_version == "Version-1" else 2
gr_info(translations["start"].format(start=translations["create"]))
p = subprocess.Popen(f'{python} {configs["create_dataset_path"]} --input_audio "{input_audio}" --output_dataset "{output_dataset}" --clean_dataset {clean_dataset} --clean_strength {clean_strength} --separator_reverb {separator_reverb} --kim_vocal_version {version} --overlap {overlap} --segments_size {segments_size} --mdx_hop_length {hop_length} --mdx_batch_size {batch_size} --denoise_mdx {denoise_mdx} --skip {skip} --skip_start_audios "{skip_start}" --skip_end_audios "{skip_end}" --sample_rate {sample_rate}', shell=True)
done = [False]
threading.Thread(target=if_done, args=(done, p)).start()
for log in log_read(done, "create_dataset"):
yield log
def preprocess(model_name, sample_rate, cpu_core, cut_preprocess, process_effects, dataset, clean_dataset, clean_strength):
sr = int(float(sample_rate.rstrip("k")) * 1000)
if not model_name: return gr_warning(translations["provide_name"])
if not os.path.exists(dataset) or not any(f.lower().endswith(("wav", "mp3", "flac", "ogg", "opus", "m4a", "mp4", "aac", "alac", "wma", "aiff", "webm", "ac3")) for f in os.listdir(dataset) if os.path.isfile(os.path.join(dataset, f))): return gr_warning(translations["not_found_data"])
model_dir = os.path.join(configs["logs_path"], model_name)
if os.path.exists(model_dir): shutil.rmtree(model_dir, ignore_errors=True)
p = subprocess.Popen(f'{python} {configs["preprocess_path"]} --model_name "{model_name}" --dataset_path "{dataset}" --sample_rate {sr} --cpu_cores {cpu_core} --cut_preprocess {cut_preprocess} --process_effects {process_effects} --clean_dataset {clean_dataset} --clean_strength {clean_strength}', shell=True)
done = [False]
threading.Thread(target=if_done, args=(done, p)).start()
os.makedirs(model_dir, exist_ok=True)
for log in log_read(done, "preprocess"):
yield log
def extract(model_name, version, method, pitch_guidance, hop_length, cpu_cores, gpu, sample_rate, embedders, custom_embedders, onnx_f0_mode, embedders_mode, f0_autotune, f0_autotune_strength, hybrid_method, rms_extract):
f0method, embedder_model = (method if method != "hybrid" else hybrid_method), (embedders if embedders != "custom" else custom_embedders)
sr = int(float(sample_rate.rstrip("k")) * 1000)
if not model_name: return gr_warning(translations["provide_name"])
model_dir = os.path.join(configs["logs_path"], model_name)
try:
if not any(os.path.isfile(os.path.join(model_dir, "sliced_audios", f)) for f in os.listdir(os.path.join(model_dir, "sliced_audios"))) or not any(os.path.isfile(os.path.join(model_dir, "sliced_audios_16k", f)) for f in os.listdir(os.path.join(model_dir, "sliced_audios_16k"))): return gr_warning(translations["not_found_data_preprocess"])
except:
return gr_warning(translations["not_found_data_preprocess"])
p = subprocess.Popen(f'{python} {configs["extract_path"]} --model_name "{model_name}" --rvc_version {version} --f0_method {f0method} --pitch_guidance {pitch_guidance} --hop_length {hop_length} --cpu_cores {cpu_cores} --gpu {gpu} --sample_rate {sr} --embedder_model {embedder_model} --f0_onnx {onnx_f0_mode} --embedders_mode {embedders_mode} --f0_autotune {f0_autotune} --f0_autotune_strength {f0_autotune_strength} --rms_extract {rms_extract}', shell=True)
done = [False]
threading.Thread(target=if_done, args=(done, p)).start()
os.makedirs(model_dir, exist_ok=True)
for log in log_read(done, "extract"):
yield log
def create_index(model_name, rvc_version, index_algorithm):
if not model_name: return gr_warning(translations["provide_name"])
model_dir = os.path.join(configs["logs_path"], model_name)
try:
if not any(os.path.isfile(os.path.join(model_dir, f"{rvc_version}_extracted", f)) for f in os.listdir(os.path.join(model_dir, f"{rvc_version}_extracted"))): return gr_warning(translations["not_found_data_extract"])
except:
return gr_warning(translations["not_found_data_extract"])
p = subprocess.Popen(f'{python} {configs["create_index_path"]} --model_name "{model_name}" --rvc_version {rvc_version} --index_algorithm {index_algorithm}', shell=True)
done = [False]
threading.Thread(target=if_done, args=(done, p)).start()
os.makedirs(model_dir, exist_ok=True)
for log in log_read(done, "create_index"):
yield log
def training(model_name, rvc_version, save_every_epoch, save_only_latest, save_every_weights, total_epoch, sample_rate, batch_size, gpu, pitch_guidance, not_pretrain, custom_pretrained, pretrain_g, pretrain_d, detector, threshold, clean_up, cache, model_author, vocoder, checkpointing, deterministic, benchmark, optimizer, energy_use):
sr = int(float(sample_rate.rstrip("k")) * 1000)
if not model_name: return gr_warning(translations["provide_name"])
model_dir = os.path.join(configs["logs_path"], model_name)
if os.path.exists(os.path.join(model_dir, "train_pid.txt")): os.remove(os.path.join(model_dir, "train_pid.txt"))
try:
if not any(os.path.isfile(os.path.join(model_dir, f"{rvc_version}_extracted", f)) for f in os.listdir(os.path.join(model_dir, f"{rvc_version}_extracted"))): return gr_warning(translations["not_found_data_extract"])
except:
return gr_warning(translations["not_found_data_extract"])
if not not_pretrain:
if not custom_pretrained:
pretrain_dir = configs["pretrained_v2_path"] if rvc_version == 'v2' else configs["pretrained_v1_path"]
download_version = codecs.decode(f"uggcf://uhttvatsnpr.pb/NauC/Ivrganzrfr-EIP-Cebwrpg/erfbyir/znva/cergenvarq_i{'2' if rvc_version == 'v2' else '1'}/", "rot13")
pretrained_selector = {
True: {
32000: ("f0G32k.pth", "f0D32k.pth"),
40000: ("f0G40k.pth", "f0D40k.pth"),
48000: ("f0G48k.pth", "f0D48k.pth")
},
False: {
32000: ("G32k.pth", "D32k.pth"),
40000: ("G40k.pth", "D40k.pth"),
48000: ("G48k.pth", "D48k.pth")
}
}
pg2, pd2 = "", ""
pg, pd = pretrained_selector[pitch_guidance][sr]
if energy_use: pg2, pd2 = pg2 + "ENERGY_", pd2 + "ENERGY_"
if vocoder != 'Default': pg2, pd2 = pg2 + vocoder + "_", pd2 + vocoder + "_"
pg2, pd2 = pg2 + pg, pd2 + pd
pretrained_G, pretrained_D = (
os.path.join(
pretrain_dir,
pg2
),
os.path.join(
pretrain_dir,
pd2
)
)
try:
if not os.path.exists(pretrained_G):
gr_info(translations["download_pretrained"].format(dg="G", rvc_version=rvc_version))
huggingface.HF_download_file(
"".join(
[
download_version,
pg2
]
),
os.path.join(
pretrain_dir,
pg2
)
)
if not os.path.exists(pretrained_D):
gr_info(translations["download_pretrained"].format(dg="D", rvc_version=rvc_version))
huggingface.HF_download_file(
"".join(
[
download_version,
pd2
]
),
os.path.join(
pretrain_dir,
pd2
)
)
except:
gr_warning(translations["not_use_pretrain_error_download"])
pretrained_G = pretrained_D = None
else:
if not pretrain_g: return gr_warning(translations["provide_pretrained"].format(dg="G"))
if not pretrain_d: return gr_warning(translations["provide_pretrained"].format(dg="D"))
pg2, pd2 = pretrain_g, pretrain_d
pretrained_G, pretrained_D = (
(os.path.join(configs["pretrained_custom_path"], pg2) if not os.path.exists(pg2) else pg2),
(os.path.join(configs["pretrained_custom_path"], pd2) if not os.path.exists(pd2) else pd2)
)
if not os.path.exists(pretrained_G): return gr_warning(translations["not_found_pretrain"].format(dg="G"))
if not os.path.exists(pretrained_D): return gr_warning(translations["not_found_pretrain"].format(dg="D"))
else:
pretrained_G = pretrained_D = None
gr_warning(translations["not_use_pretrain"])
gr_info(translations["start"].format(start=translations["training"]))
p = subprocess.Popen(f'{python} {configs["train_path"]} --model_name "{model_name}" --rvc_version {rvc_version} --save_every_epoch {save_every_epoch} --save_only_latest {save_only_latest} --save_every_weights {save_every_weights} --total_epoch {total_epoch} --sample_rate {sr} --batch_size {batch_size} --gpu {gpu} --pitch_guidance {pitch_guidance} --overtraining_detector {detector} --overtraining_threshold {threshold} --cleanup {clean_up} --cache_data_in_gpu {cache} --g_pretrained_path "{pretrained_G}" --d_pretrained_path "{pretrained_D}" --model_author "{model_author}" --vocoder "{vocoder}" --checkpointing {checkpointing} --deterministic {deterministic} --benchmark {benchmark} --optimizer {optimizer} --energy_use {energy_use}', shell=True)
done = [False]
with open(os.path.join(model_dir, "train_pid.txt"), "w") as pid_file:
pid_file.write(str(p.pid))
threading.Thread(target=if_done, args=(done, p)).start()
for log in log_read(done, "train"):
lines = log.splitlines()
if len(lines) > 100: log = "\n".join(lines[-100:])
yield log |