File size: 24,540 Bytes
1e4a2ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
import os
import re
import sys
import shutil
import librosa
import datetime
import subprocess

import numpy as np

sys.path.append(os.getcwd())

from main.app.core.ui import gr_info, gr_warning, gr_error, process_output
from main.app.variables import logger, config, configs, translations, python

def convert(pitch, filter_radius, index_rate, rms_mix_rate, protect, hop_length, f0_method, input_path, output_path, pth_path, index_path, f0_autotune, clean_audio, clean_strength, export_format, embedder_model, resample_sr, split_audio, f0_autotune_strength, checkpointing, f0_onnx, embedders_mode, formant_shifting, formant_qfrency, formant_timbre, f0_file, proposal_pitch, proposal_pitch_threshold):    
    if config.debug_mode: subprocess.run([python, configs["convert_path"], "--pitch", str(pitch), "--filter_radius", str(filter_radius), "--index_rate", str(index_rate), "--rms_mix_rate", str(rms_mix_rate), "--protect", str(protect), "--hop_length", str(hop_length), "--f0_method", f0_method, "--input_path", input_path, "--output_path", output_path, "--pth_path", pth_path, "--index_path", index_path, "--f0_autotune", str(f0_autotune), "--clean_audio", str(clean_audio), "--clean_strength", str(clean_strength), "--export_format", export_format, "--embedder_model", embedder_model, "--resample_sr", str(resample_sr), "--split_audio", str(split_audio), "--f0_autotune_strength", str(f0_autotune_strength), "--checkpointing", str(checkpointing), "--f0_onnx", str(f0_onnx), "--embedders_mode", embedders_mode, "--formant_shifting", str(formant_shifting), "--formant_qfrency", str(formant_qfrency), "--formant_timbre", str(formant_timbre), "--f0_file", f0_file, "--proposal_pitch", str(proposal_pitch), "--proposal_pitch_threshold", str(proposal_pitch_threshold)])
    else:
        from main.inference.conversion.convert import run_convert_script
        
        run_convert_script(pitch, filter_radius, index_rate, rms_mix_rate, protect, hop_length, f0_method, input_path, output_path, pth_path, index_path, f0_autotune, f0_autotune_strength, clean_audio, clean_strength, export_format, embedder_model, resample_sr, split_audio, checkpointing, f0_file, f0_onnx, embedders_mode, formant_shifting, formant_qfrency, formant_timbre, proposal_pitch, proposal_pitch_threshold)

def convert_audio(clean, autotune, use_audio, use_original, convert_backing, not_merge_backing, merge_instrument, pitch, clean_strength, model, index, index_rate, input, output, format, method, hybrid_method, hop_length, embedders, custom_embedders, resample_sr, filter_radius, rms_mix_rate, protect, split_audio, f0_autotune_strength, input_audio_name, checkpointing, onnx_f0_mode, formant_shifting, formant_qfrency, formant_timbre, f0_file, embedders_mode, proposal_pitch, proposal_pitch_threshold):
    model_path = os.path.join(configs["weights_path"], model) if not os.path.exists(model) else model

    return_none = [None]*6
    return_none[5] = {"visible": True, "__type__": "update"}

    if not use_audio:
        if merge_instrument or not_merge_backing or convert_backing or use_original:
            gr_warning(translations["turn_on_use_audio"])
            return return_none

    if use_original:
        if convert_backing:
            gr_warning(translations["turn_off_convert_backup"])
            return return_none
        elif not_merge_backing:
            gr_warning(translations["turn_off_merge_backup"])
            return return_none

    if not model or not os.path.exists(model_path) or os.path.isdir(model_path) or not model.endswith((".pth", ".onnx")):
        gr_warning(translations["provide_file"].format(filename=translations["model"]))
        return return_none

    f0method, embedder_model = (method if method != "hybrid" else hybrid_method), (embedders if embedders != "custom" else custom_embedders)

    if use_audio:
        output_audio = os.path.join(configs["audios_path"], input_audio_name)

        from main.library.utils import pydub_load
        
        def get_audio_file(label):
            matching_files = [f for f in os.listdir(output_audio) if label in f]

            if not matching_files: return translations["notfound"]   
            return os.path.join(output_audio, matching_files[0])

        output_path = os.path.join(output_audio, f"Convert_Vocals.{format}")
        output_backing = os.path.join(output_audio, f"Convert_Backing.{format}")
        output_merge_backup = os.path.join(output_audio, f"Vocals+Backing.{format}")
        output_merge_instrument = os.path.join(output_audio, f"Vocals+Instruments.{format}")

        if os.path.exists(output_audio): os.makedirs(output_audio, exist_ok=True)
        output_path = process_output(output_path)

        if use_original:
            original_vocal = get_audio_file('Original_Vocals_No_Reverb.')

            if original_vocal == translations["notfound"]: original_vocal = get_audio_file('Original_Vocals.')

            if original_vocal == translations["notfound"]: 
                gr_warning(translations["not_found_original_vocal"])
                return return_none
            
            input_path = original_vocal
        else:
            main_vocal = get_audio_file('Main_Vocals_No_Reverb.')
            backing_vocal = get_audio_file('Backing_Vocals_No_Reverb.')

            if main_vocal == translations["notfound"]: main_vocal = get_audio_file('Main_Vocals.')
            if not not_merge_backing and backing_vocal == translations["notfound"]: backing_vocal = get_audio_file('Backing_Vocals.')

            if main_vocal == translations["notfound"]: 
                gr_warning(translations["not_found_main_vocal"])
                return return_none
            
            if not not_merge_backing and backing_vocal == translations["notfound"]: 
                gr_warning(translations["not_found_backing_vocal"])
                return return_none
            
            input_path = main_vocal
            backing_path = backing_vocal

        gr_info(translations["convert_vocal"])

        convert(pitch, filter_radius, index_rate, rms_mix_rate, protect, hop_length, f0method, input_path, output_path, model_path, index, autotune, clean, clean_strength, format, embedder_model, resample_sr, split_audio, f0_autotune_strength, checkpointing, onnx_f0_mode, embedders_mode, formant_shifting, formant_qfrency, formant_timbre, f0_file, proposal_pitch, proposal_pitch_threshold)

        gr_info(translations["convert_success"])

        if convert_backing:
            output_backing = process_output(output_backing)

            gr_info(translations["convert_backup"])

            convert(pitch, filter_radius, index_rate, rms_mix_rate, protect, hop_length, f0method, backing_path, output_backing, model_path, index, autotune, clean, clean_strength, format, embedder_model, resample_sr, split_audio, f0_autotune_strength, checkpointing, onnx_f0_mode, embedders_mode, formant_shifting, formant_qfrency, formant_timbre, f0_file, proposal_pitch, proposal_pitch_threshold)

            gr_info(translations["convert_backup_success"])

        try:
            if not not_merge_backing and not use_original:
                backing_source = output_backing if convert_backing else backing_vocal

                output_merge_backup = process_output(output_merge_backup)

                gr_info(translations["merge_backup"])

                pydub_load(output_path, volume=-4).overlay(pydub_load(backing_source, volume=-6)).export(output_merge_backup, format=format)

                gr_info(translations["merge_success"])

            if merge_instrument:    
                vocals = output_merge_backup if not not_merge_backing and not use_original else output_path

                output_merge_instrument = process_output(output_merge_instrument)

                gr_info(translations["merge_instruments_process"])

                instruments = get_audio_file('Instruments.')
                
                if instruments == translations["notfound"]: 
                    gr_warning(translations["not_found_instruments"])
                    output_merge_instrument = None
                else: pydub_load(instruments, volume=-7).overlay(pydub_load(vocals, volume=-4 if use_original else None)).export(output_merge_instrument, format=format)
                
                gr_info(translations["merge_success"])
        except:
            return return_none

        return [(None if use_original else output_path), output_backing, (None if not_merge_backing and use_original else output_merge_backup), (output_path if use_original else None), (output_merge_instrument if merge_instrument else None), {"visible": True, "__type__": "update"}]
    else:
        if not input or not os.path.exists(input) or os.path.isdir(input): 
            gr_warning(translations["input_not_valid"])
            return return_none
        
        if not output:
            gr_warning(translations["output_not_valid"])
            return return_none
        
        output = output.replace("wav", format)

        if os.path.isdir(input):
            gr_info(translations["is_folder"])

            if not [f for f in os.listdir(input) if f.lower().endswith(("wav", "mp3", "flac", "ogg", "opus", "m4a", "mp4", "aac", "alac", "wma", "aiff", "webm", "ac3"))]:
                gr_warning(translations["not_found_in_folder"])
                return return_none
            
            gr_info(translations["batch_convert"])

            output_dir = os.path.dirname(output) or output
            convert(pitch, filter_radius, index_rate, rms_mix_rate, protect, hop_length, f0method, input, output_dir, model_path, index, autotune, clean, clean_strength, format, embedder_model, resample_sr, split_audio, f0_autotune_strength, checkpointing, onnx_f0_mode, embedders_mode, formant_shifting, formant_qfrency, formant_timbre, f0_file, proposal_pitch, proposal_pitch_threshold)

            gr_info(translations["batch_convert_success"])

            return return_none
        else:
            output_dir = os.path.dirname(output) or output

            if not os.path.exists(output_dir): os.makedirs(output_dir, exist_ok=True)
            output = process_output(output)

            gr_info(translations["convert_vocal"])

            convert(pitch, filter_radius, index_rate, rms_mix_rate, protect, hop_length, f0method, input, output, model_path, index, autotune, clean, clean_strength, format, embedder_model, resample_sr, split_audio, f0_autotune_strength, checkpointing, onnx_f0_mode, embedders_mode, formant_shifting, formant_qfrency, formant_timbre, f0_file, proposal_pitch, proposal_pitch_threshold)

            gr_info(translations["convert_success"])

            return_none[0] = output
            return return_none

def convert_selection(clean, autotune, use_audio, use_original, convert_backing, not_merge_backing, merge_instrument, pitch, clean_strength, model, index, index_rate, input, output, format, method, hybrid_method, hop_length, embedders, custom_embedders, resample_sr, filter_radius, rms_mix_rate, protect, split_audio, f0_autotune_strength, checkpointing, onnx_f0_mode, formant_shifting, formant_qfrency, formant_timbre, f0_file, embedders_mode, proposal_pitch, proposal_pitch_threshold):
    if use_audio:
        gr_info(translations["search_separate"])
        choice = [f for f in os.listdir(configs["audios_path"]) if os.path.isdir(os.path.join(configs["audios_path"], f))] if config.debug_mode else [f for f in os.listdir(configs["audios_path"]) if os.path.isdir(os.path.join(configs["audios_path"], f)) and any(file.lower().endswith((".wav", ".mp3", ".flac", ".ogg", ".opus", ".m4a", ".mp4", ".aac", ".alac", ".wma", ".aiff", ".webm", ".ac3")) for file in os.listdir(os.path.join(configs["audios_path"], f)))]

        gr_info(translations["found_choice"].format(choice=len(choice)))

        if len(choice) == 0: 
            gr_warning(translations["separator==0"])

            return [{"choices": [], "value": "", "interactive": False, "visible": False, "__type__": "update"}, None, None, None, None, None, {"visible": True, "__type__": "update"}, {"visible": False, "__type__": "update"}]
        elif len(choice) == 1:
            convert_output = convert_audio(clean, autotune, use_audio, use_original, convert_backing, not_merge_backing, merge_instrument, pitch, clean_strength, model, index, index_rate, None, None, format, method, hybrid_method, hop_length, embedders, custom_embedders, resample_sr, filter_radius, rms_mix_rate, protect, split_audio, f0_autotune_strength, choice[0], checkpointing, onnx_f0_mode, formant_shifting, formant_qfrency, formant_timbre, f0_file, embedders_mode, proposal_pitch, proposal_pitch_threshold)

            return [{"choices": [], "value": "", "interactive": False, "visible": False, "__type__": "update"}, convert_output[0], convert_output[1], convert_output[2], convert_output[3], convert_output[4], {"visible": True, "__type__": "update"}, {"visible": False, "__type__": "update"}]
        else: return [{"choices": choice, "value": choice[0], "interactive": True, "visible": True, "__type__": "update"}, None, None, None, None, None, {"visible": False, "__type__": "update"}, {"visible": True, "__type__": "update"}]
    else:
        main_convert = convert_audio(clean, autotune, use_audio, use_original, convert_backing, not_merge_backing, merge_instrument, pitch, clean_strength, model, index, index_rate, input, output, format, method, hybrid_method, hop_length, embedders, custom_embedders, resample_sr, filter_radius, rms_mix_rate, protect, split_audio, f0_autotune_strength, None, checkpointing, onnx_f0_mode, formant_shifting, formant_qfrency, formant_timbre, f0_file, embedders_mode, proposal_pitch, proposal_pitch_threshold)

        return [{"choices": [], "value": "", "interactive": False, "visible": False, "__type__": "update"}, main_convert[0], None, None, None, None, {"visible": True, "__type__": "update"}, {"visible": False, "__type__": "update"}]
    
def convert_with_whisper(num_spk, model_size, cleaner, clean_strength, autotune, f0_autotune_strength, checkpointing, model_1, model_2, model_index_1, model_index_2, pitch_1, pitch_2, index_strength_1, index_strength_2, export_format, input_audio, output_audio, onnx_f0_mode, method, hybrid_method, hop_length, embed_mode, embedders, custom_embedders, resample_sr, filter_radius, rms_mix_rate, protect, formant_shifting, formant_qfrency_1, formant_timbre_1, formant_qfrency_2, formant_timbre_2, proposal_pitch, proposal_pitch_threshold):
    from pydub import AudioSegment
    from sklearn.cluster import AgglomerativeClustering
    
    from main.library.speaker_diarization.audio import Audio
    from main.library.speaker_diarization.segment import Segment
    from main.library.speaker_diarization.whisper import load_model
    from main.library.utils import check_spk_diarization, pydub_load
    from main.library.speaker_diarization.embedding import SpeechBrainPretrainedSpeakerEmbedding
    
    check_spk_diarization(model_size)
    model_pth_1, model_pth_2 = os.path.join(configs["weights_path"], model_1) if not os.path.exists(model_1) else model_1, os.path.join(configs["weights_path"], model_2) if not os.path.exists(model_2) else model_2

    if (not model_1 or not os.path.exists(model_pth_1) or os.path.isdir(model_pth_1) or not model_pth_1.endswith((".pth", ".onnx"))) and (not model_2 or not os.path.exists(model_pth_2) or os.path.isdir(model_pth_2) or not model_pth_2.endswith((".pth", ".onnx"))):
        gr_warning(translations["provide_file"].format(filename=translations["model"]))
        return None
    
    if not model_1: model_pth_1 = model_pth_2
    if not model_2: model_pth_2 = model_pth_1

    if not input_audio or not os.path.exists(input_audio) or os.path.isdir(input_audio): 
        gr_warning(translations["input_not_valid"])
        return None
        
    if not output_audio:
        gr_warning(translations["output_not_valid"])
        return None
    
    output_audio = process_output(output_audio)
    gr_info(translations["start_whisper"])
    
    try:
        audio = Audio()

        embedding_model = SpeechBrainPretrainedSpeakerEmbedding(embedding=os.path.join(configs["speaker_diarization_path"], "models", "speechbrain"), device=config.device)
        segments = load_model(model_size, device=config.device).transcribe(input_audio, fp16=configs.get("fp16", False), word_timestamps=True)["segments"]

        y, sr = librosa.load(input_audio, sr=None)  
        duration = len(y) / sr
            
        def segment_embedding(segment):
            waveform, _ = audio.crop(input_audio, Segment(segment["start"], min(duration, segment["end"])))
            return embedding_model(waveform.mean(dim=0, keepdim=True)[None] if waveform.shape[0] == 2 else waveform[None])  
        
        def time(secs):
            return datetime.timedelta(seconds=round(secs))
        
        def merge_audio(files_list, time_stamps, original_file_path, output_path, format):
            def extract_number(filename):
                match = re.search(r'_(\d+)', filename)
                return int(match.group(1)) if match else 0

            total_duration = len(pydub_load(original_file_path))
            combined = AudioSegment.empty() 
            current_position = 0 

            for file, (start_i, end_i) in zip(sorted(files_list, key=extract_number), time_stamps):
                if start_i > current_position: combined += AudioSegment.silent(duration=start_i - current_position)  
                
                combined += pydub_load(file)  
                current_position = end_i

            if current_position < total_duration: combined += AudioSegment.silent(duration=total_duration - current_position)
            combined.export(output_path, format=format)

            return output_path

        embeddings = np.zeros(shape=(len(segments), 192))
        for i, segment in enumerate(segments):
            embeddings[i] = segment_embedding(segment)

        labels = AgglomerativeClustering(num_spk).fit(np.nan_to_num(embeddings)).labels_
        for i in range(len(segments)):
            segments[i]["speaker"] = 'SPEAKER ' + str(labels[i] + 1)

        merged_segments, current_text = [], []
        current_speaker, current_start = None, None

        for i, segment in enumerate(segments):
            speaker = segment["speaker"]
            start_time = segment["start"]
            text = segment["text"][1:]  

            if speaker == current_speaker:
                current_text.append(text)
                end_time = segment["end"]
            else:
                if current_speaker is not None: merged_segments.append({"speaker": current_speaker, "start": current_start, "end": end_time, "text": " ".join(current_text)})
                
                current_speaker = speaker
                current_start = start_time
                current_text = [text]
                end_time = segment["end"]

        if current_speaker is not None: merged_segments.append({"speaker": current_speaker, "start": current_start, "end": end_time, "text": " ".join(current_text)})

        gr_info(translations["whisper_done"])

        x = ""
        for segment in merged_segments:
            x += f"\n{segment['speaker']} {str(time(segment['start']))} - {str(time(segment['end']))}\n"
            x += segment["text"] + "\n"

        logger.info(x)

        gr_info(translations["process_audio"])

        audio = pydub_load(input_audio)
        output_folder = "audios_temp"

        if os.path.exists(output_folder): shutil.rmtree(output_folder, ignore_errors=True)
        for f in [output_folder, os.path.join(output_folder, "1"), os.path.join(output_folder, "2")]:
            os.makedirs(f, exist_ok=True)

        time_stamps, processed_segments = [], []
        for i, segment in enumerate(merged_segments):
            start_ms = int(segment["start"] * 1000) 
            end_ms = int(segment["end"] * 1000)

            index = i + 1

            segment_filename = os.path.join(output_folder, "1" if i % 2 == 1 else "2", f"segment_{index}.wav")
            audio[start_ms:end_ms].export(segment_filename, format="wav")

            processed_segments.append(os.path.join(output_folder, "1" if i % 2 == 1 else "2", f"segment_{index}_output.wav"))
            time_stamps.append((start_ms, end_ms))

        f0method, embedder_model = (method if method != "hybrid" else hybrid_method), (embedders if embedders != "custom" else custom_embedders)

        gr_info(translations["process_done_start_convert"])

        convert(pitch_1, filter_radius, index_strength_1, rms_mix_rate, protect, hop_length, f0method, os.path.join(output_folder, "1"), output_folder, model_pth_1, model_index_1, autotune, cleaner, clean_strength, "wav", embedder_model, resample_sr, False, f0_autotune_strength, checkpointing, onnx_f0_mode, embed_mode, formant_shifting, formant_qfrency_1, formant_timbre_1, "", proposal_pitch, proposal_pitch_threshold)
        convert(pitch_2, filter_radius, index_strength_2, rms_mix_rate, protect, hop_length, f0method, os.path.join(output_folder, "2"), output_folder, model_pth_2, model_index_2, autotune, cleaner, clean_strength, "wav", embedder_model, resample_sr, False, f0_autotune_strength, checkpointing, onnx_f0_mode, embed_mode, formant_shifting, formant_qfrency_2, formant_timbre_2, "", proposal_pitch, proposal_pitch_threshold)

        gr_info(translations["convert_success"])
        return merge_audio(processed_segments, time_stamps, input_audio, output_audio.replace("wav", export_format), export_format)
    except Exception as e:
        gr_error(translations["error_occurred"].format(e=e))
        import traceback
        logger.debug(traceback.format_exc())
        return None
    finally:
        if os.path.exists("audios_temp"): shutil.rmtree("audios_temp", ignore_errors=True)

def convert_tts(clean, autotune, pitch, clean_strength, model, index, index_rate, input, output, format, method, hybrid_method, hop_length, embedders, custom_embedders, resample_sr, filter_radius, rms_mix_rate, protect, split_audio, f0_autotune_strength, checkpointing, onnx_f0_mode, formant_shifting, formant_qfrency, formant_timbre, f0_file, embedders_mode, proposal_pitch, proposal_pitch_threshold):
    model_path = os.path.join(configs["weights_path"], model) if not os.path.exists(model) else model

    if not model_path or not os.path.exists(model_path) or os.path.isdir(model_path) or not model.endswith((".pth", ".onnx")):
        gr_warning(translations["provide_file"].format(filename=translations["model"]))
        return None

    if not input or not os.path.exists(input): 
        gr_warning(translations["input_not_valid"])
        return None
    
    if os.path.isdir(input): 
        input_audio = [f for f in os.listdir(input) if "tts" in f and f.lower().endswith(("wav", "mp3", "flac", "ogg", "opus", "m4a", "mp4", "aac", "alac", "wma", "aiff", "webm", "ac3"))]
        
        if not input_audio:
            gr_warning(translations["not_found_in_folder"])
            return None
        
        input = os.path.join(input, input_audio[0])
    
    if not output:
        gr_warning(translations["output_not_valid"])
        return None
    
    output = output.replace("wav", format)
    if os.path.isdir(output): output = os.path.join(output, f"tts.{format}")

    output_dir = os.path.dirname(output)
    if not os.path.exists(output_dir): os.makedirs(output_dir, exist_ok=True)
    
    output = process_output(output)

    f0method = method if method != "hybrid" else hybrid_method
    embedder_model = embedders if embedders != "custom" else custom_embedders

    gr_info(translations["convert_vocal"])

    convert(pitch, filter_radius, index_rate, rms_mix_rate, protect, hop_length, f0method, input, output, model_path, index, autotune, clean, clean_strength, format, embedder_model, resample_sr, split_audio, f0_autotune_strength, checkpointing, onnx_f0_mode, embedders_mode, formant_shifting, formant_qfrency, formant_timbre, f0_file, proposal_pitch, proposal_pitch_threshold)

    gr_info(translations["convert_success"])
    return output