File size: 1,349 Bytes
1e4a2ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
import os
import sys
import torch
import torch.nn as nn
sys.path.append(os.getcwd())
from main.library.predictors.RMVPE.deepunet import DeepUnet
N_MELS, N_CLASS = 128, 360
class BiGRU(nn.Module):
def __init__(self, input_features, hidden_features, num_layers):
super(BiGRU, self).__init__()
self.gru = nn.GRU(input_features, hidden_features, num_layers=num_layers, batch_first=True, bidirectional=True)
def forward(self, x):
try:
return self.gru(x)[0]
except:
torch.backends.cudnn.enabled = False
return self.gru(x)[0]
class E2E(nn.Module):
def __init__(self, n_blocks, n_gru, kernel_size, en_de_layers=5, inter_layers=4, in_channels=1, en_out_channels=16):
super(E2E, self).__init__()
self.unet = DeepUnet(kernel_size, n_blocks, en_de_layers, inter_layers, in_channels, en_out_channels)
self.cnn = nn.Conv2d(en_out_channels, 3, (3, 3), padding=(1, 1))
self.fc = nn.Sequential(BiGRU(3 * 128, 256, n_gru), nn.Linear(512, N_CLASS), nn.Dropout(0.25), nn.Sigmoid()) if n_gru else nn.Sequential(nn.Linear(3 * N_MELS, N_CLASS), nn.Dropout(0.25), nn.Sigmoid())
def forward(self, mel):
return self.fc(self.cnn(self.unet(mel.transpose(-1, -2).unsqueeze(1))).transpose(1, 2).flatten(-2)) |