File size: 7,487 Bytes
1e4a2ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import os
import sys
import torch

import numpy as np
import torch.nn.functional as F

from librosa.filters import mel
from torchaudio.transforms import Resample

sys.path.append(os.getcwd())

from main.library import opencl
from main.library.predictors.FCPE.stft import STFT

def spawn_wav2mel(args, device = None):
    _type = args.mel.type
    if (str(_type).lower() == 'none') or (str(_type).lower() == 'default'): _type = 'default'
    elif str(_type).lower() == 'stft': _type = 'stft'
    wav2mel = Wav2MelModule(sr=args.mel.sr, n_mels=args.mel.num_mels, n_fft=args.mel.n_fft, win_size=args.mel.win_size, hop_length=args.mel.hop_size, fmin=args.mel.fmin, fmax=args.mel.fmax, clip_val=1e-05, mel_type=_type)
    
    return wav2mel.to(torch.device(device))

class HannWindow(torch.nn.Module):
    def __init__(self, win_size):
        super().__init__()
        self.register_buffer('window', torch.hann_window(win_size), persistent=False)

    def forward(self):
        return self.window

class MelModule(torch.nn.Module):
    def __init__(self, sr, n_mels, n_fft, win_size, hop_length, fmin = None, fmax = None, clip_val = 1e-5, out_stft = False):
        super().__init__()
        if fmin is None: fmin = 0
        if fmax is None: fmax = sr / 2
        self.target_sr = sr
        self.n_mels = n_mels
        self.n_fft = n_fft
        self.win_size = win_size
        self.hop_length = hop_length
        self.fmin = fmin
        self.fmax = fmax
        self.clip_val = clip_val
        self.register_buffer('mel_basis', torch.tensor(mel(sr=sr, n_fft=n_fft, n_mels=n_mels, fmin=fmin, fmax=fmax)).float(), persistent=False)
        self.hann_window = torch.nn.ModuleDict()
        self.out_stft = out_stft

    @torch.no_grad()
    def __call__(self, y, key_shift = 0, speed = 1, center = False, no_cache_window = False):
        n_fft = self.n_fft
        win_size = self.win_size
        hop_length = self.hop_length
        clip_val = self.clip_val
        factor = 2 ** (key_shift / 12)
        n_fft_new = int(np.round(n_fft * factor))
        win_size_new = int(np.round(win_size * factor))
        hop_length_new = int(np.round(hop_length * speed))

        y = y.squeeze(-1)
        key_shift_key = str(key_shift)

        if not no_cache_window:
            if key_shift_key in self.hann_window: hann_window = self.hann_window[key_shift_key]
            else:
                hann_window = HannWindow(win_size_new).to(self.mel_basis.device)
                self.hann_window[key_shift_key] = hann_window

            hann_window_tensor = hann_window()
        else: hann_window_tensor = torch.hann_window(win_size_new).to(self.mel_basis.device)

        pad_left = (win_size_new - hop_length_new) // 2
        pad_right = max((win_size_new - hop_length_new + 1) // 2, win_size_new - y.size(-1) - pad_left)

        mode = 'reflect' if pad_right < y.size(-1) else 'constant'
        pad = F.pad(y.unsqueeze(1), (pad_left, pad_right), mode=mode).squeeze(1)

        if str(y.device).startswith("ocl"):
            stft = opencl.STFT(filter_length=n_fft_new, hop_length=hop_length_new, win_length=win_size_new).to(y.device)
            spec = stft.transform(pad, 1e-9)
        else:
            spec = torch.stft(pad, n_fft_new, hop_length=hop_length_new, win_length=win_size_new, window=hann_window_tensor, center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=True)
            spec = torch.sqrt(spec.real.pow(2) + spec.imag.pow(2) + 1e-9)

        if key_shift != 0:
            size = n_fft // 2 + 1
            resize = spec.size(1)

            if resize < size: spec = F.pad(spec, (0, 0, 0, size - resize))
            spec = spec[:, :size, :] * win_size / win_size_new

        spec = spec[:, :512, :] if self.out_stft else torch.matmul(self.mel_basis, spec)
        return torch.log(torch.clamp(spec, min=clip_val) * 1).transpose(-1, -2)

class Wav2MelModule(torch.nn.Module):
    def __init__(self, sr, n_mels, n_fft, win_size, hop_length, fmin = None, fmax = None, clip_val = 1e-5, mel_type="default"):
        super().__init__()
        if fmin is None: fmin = 0
        if fmax is None: fmax = sr / 2
        self.sampling_rate = sr
        self.n_mels = n_mels
        self.n_fft = n_fft
        self.win_size = win_size
        self.hop_size = hop_length
        self.fmin = fmin
        self.fmax = fmax
        self.clip_val = clip_val
        self.register_buffer('tensor_device_marker', torch.tensor(1.0).float(), persistent=False)
        self.resample_kernel = torch.nn.ModuleDict()
        if mel_type == "default": self.mel_extractor = MelModule(sr, n_mels, n_fft, win_size, hop_length, fmin, fmax, clip_val, out_stft=False)
        elif mel_type == "stft": self.mel_extractor = MelModule(sr, n_mels, n_fft, win_size, hop_length, fmin, fmax, clip_val, out_stft=True)
        self.mel_type = mel_type

    @torch.no_grad()
    def __call__(self, audio, sample_rate, keyshift = 0, no_cache_window = False):
        if sample_rate == self.sampling_rate: audio_res = audio
        else:
            key_str = str(sample_rate)
            if key_str not in self.resample_kernel:
                if len(self.resample_kernel) > 8: self.resample_kernel.clear()
                self.resample_kernel[key_str] = Resample(sample_rate, self.sampling_rate, lowpass_filter_width=128).to(self.tensor_device_marker.device)

            audio_res = self.resample_kernel[key_str](audio.squeeze(-1)).unsqueeze(-1)

        mel = self.mel_extractor(audio_res, keyshift, no_cache_window=no_cache_window)
        n_frames = int(audio.shape[1] // self.hop_size) + 1
        if n_frames > int(mel.shape[1]): mel = torch.cat((mel, mel[:, -1:, :]), 1)
        if n_frames < int(mel.shape[1]): mel = mel[:, :n_frames, :]

        return mel 

class Wav2Mel:
    def __init__(self, device=None, dtype=torch.float32):
        self.sample_rate = 16000
        self.hop_size = 160
        if device is None: device = "cuda" if torch.cuda.is_available() else "cpu"
        self.device = device
        self.dtype = dtype
        self.stft = STFT(16000, 128, 1024, 1024, 160, 0, 8000)
        self.resample_kernel = {}

    def extract_nvstft(self, audio, keyshift=0, train=False):
        return self.stft.get_mel(audio, keyshift=keyshift, train=train).transpose(1, 2)

    def extract_mel(self, audio, sample_rate, keyshift=0, train=False):
        audio = audio.to(self.dtype).to(self.device)
        if sample_rate == self.sample_rate: audio_res = audio
        else:
            key_str = str(sample_rate)
            if key_str not in self.resample_kernel: self.resample_kernel[key_str] = Resample(sample_rate, self.sample_rate, lowpass_filter_width=128)
            self.resample_kernel[key_str] = (self.resample_kernel[key_str].to(self.dtype).to(self.device))
            audio_res = self.resample_kernel[key_str](audio)

        mel = self.extract_nvstft(audio_res, keyshift=keyshift, train=train) 
        n_frames = int(audio.shape[1] // self.hop_size) + 1
        mel = (torch.cat((mel, mel[:, -1:, :]), 1) if n_frames > int(mel.shape[1]) else mel)
        return mel[:, :n_frames, :] if n_frames < int(mel.shape[1]) else mel

    def __call__(self, audio, sample_rate, keyshift=0, train=False):
        return self.extract_mel(audio, sample_rate, keyshift=keyshift, train=train)