File size: 8,809 Bytes
1e4a2ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import os
import sys
import json
import torch
import shutil

import gradio as gr

sys.path.append(os.getcwd())

from main.library import opencl
from main.app.variables import config, configs, configs_json, logger, translations, edgetts, google_tts_voice, method_f0, method_f0_full

def gr_info(message):
    gr.Info(message, duration=2)
    logger.info(message)

def gr_warning(message):
    gr.Warning(message, duration=2)
    logger.warning(message)

def gr_error(message):
    gr.Error(message=message, duration=6)
    logger.error(message)

def get_gpu_info():
    ngpu = torch.cuda.device_count()
    gpu_infos = [f"{i}: {torch.cuda.get_device_name(i)} ({int(torch.cuda.get_device_properties(i).total_memory / 1024 / 1024 / 1024 + 0.4)} GB)" for i in range(ngpu) if torch.cuda.is_available() or ngpu != 0]

    if len(gpu_infos) == 0:
        ngpu = opencl.device_count()
        gpu_infos = [f"{i}: {opencl.device_name(i)}" for i in range(ngpu) if opencl.is_available() or ngpu != 0]

    return "\n".join(gpu_infos) if len(gpu_infos) > 0 else translations["no_support_gpu"]

def gpu_number_str():
    ngpu = torch.cuda.device_count()
    if ngpu == 0: ngpu = opencl.device_count()

    return str("-".join(map(str, range(ngpu))) if torch.cuda.is_available() or opencl.is_available() else "-")

def change_f0_choices(): 
    f0_file = sorted([os.path.abspath(os.path.join(root, f)) for root, _, files in os.walk(configs["f0_path"]) for f in files if f.endswith(".txt")])
    return {"value": f0_file[0] if len(f0_file) >= 1 else "", "choices": f0_file, "__type__": "update"}

def change_audios_choices(input_audio): 
    audios = sorted([os.path.abspath(os.path.join(root, f)) for root, _, files in os.walk(configs["audios_path"]) for f in files if os.path.splitext(f)[1].lower() in (".wav", ".mp3", ".flac", ".ogg", ".opus", ".m4a", ".mp4", ".aac", ".alac", ".wma", ".aiff", ".webm", ".ac3")])
    return {"value": input_audio if input_audio != "" else (audios[0] if len(audios) >= 1 else ""), "choices": audios, "__type__": "update"}

def change_models_choices():
    model, index = sorted(list(model for model in os.listdir(configs["weights_path"]) if model.endswith((".pth", ".onnx")) and not model.startswith("G_") and not model.startswith("D_"))), sorted([os.path.join(root, name) for root, _, files in os.walk(configs["logs_path"], topdown=False) for name in files if name.endswith(".index") and "trained" not in name])
    return [{"value": model[0] if len(model) >= 1 else "", "choices": model, "__type__": "update"}, {"value": index[0] if len(index) >= 1 else "", "choices": index, "__type__": "update"}]

def change_pretrained_choices():
    pretrainD = sorted([model for model in os.listdir(configs["pretrained_custom_path"]) if model.endswith(".pth") and "D" in model])
    pretrainG = sorted([model for model in os.listdir(configs["pretrained_custom_path"]) if model.endswith(".pth") and "G" in model])

    return [{"choices": pretrainD, "value": pretrainD[0] if len(pretrainD) >= 1 else "", "__type__": "update"}, {"choices": pretrainG, "value": pretrainG[0] if len(pretrainG) >= 1 else "", "__type__": "update"}]

def change_choices_del():
    return [{"choices": sorted(list(model for model in os.listdir(configs["weights_path"]) if model.endswith(".pth") and not model.startswith("G_") and not model.startswith("D_"))), "__type__": "update"}, {"choices": sorted([os.path.join(configs["logs_path"], f) for f in os.listdir(configs["logs_path"]) if "mute" not in f and os.path.isdir(os.path.join(configs["logs_path"], f))]), "__type__": "update"}]

def change_preset_choices():
    return {"value": "", "choices": sorted(list(f for f in os.listdir(configs["presets_path"]) if f.endswith(".conversion.json"))), "__type__": "update"}

def change_effect_preset_choices():
    return {"value": "", "choices": sorted(list(f for f in os.listdir(configs["presets_path"]) if f.endswith(".effect.json"))), "__type__": "update"}

def change_tts_voice_choices(google):
    return {"choices": google_tts_voice if google else edgetts, "value": google_tts_voice[0] if google else edgetts[0], "__type__": "update"}

def change_backing_choices(backing, merge):
    if backing or merge: return {"value": False, "interactive": False, "__type__": "update"}
    elif not backing or not merge: return  {"interactive": True, "__type__": "update"}
    else: gr_warning(translations["option_not_valid"])

def change_download_choices(select):
    selects = [False]*10

    if select == translations["download_url"]: selects[0] = selects[1] = selects[2] = True
    elif select == translations["download_from_csv"]:  selects[3] = selects[4] = True
    elif select == translations["search_models"]: selects[5] = selects[6] = True
    elif select == translations["upload"]: selects[9] = True
    else: gr_warning(translations["option_not_valid"])

    return [{"visible": selects[i], "__type__": "update"} for i in range(len(selects))]

def change_download_pretrained_choices(select):
    selects = [False]*8

    if select == translations["download_url"]: selects[0] = selects[1] = selects[2] = True
    elif select == translations["list_model"]: selects[3] = selects[4] = selects[5] = True
    elif select == translations["upload"]: selects[6] = selects[7] = True
    else: gr_warning(translations["option_not_valid"])

    return [{"visible": selects[i], "__type__": "update"} for i in range(len(selects))]

def get_index(model):
    model = os.path.basename(model).split("_")[0]
    return {"value": next((f for f in [os.path.join(root, name) for root, _, files in os.walk(configs["logs_path"], topdown=False) for name in files if name.endswith(".index") and "trained" not in name] if model.split(".")[0] in f), ""), "__type__": "update"} if model else None

def index_strength_show(index):
    return {"visible": index != "" and os.path.exists(index), "value": 0.5, "__type__": "update"}

def hoplength_show(method, hybrid_method=None):
    visible = False

    for m in ["mangio-crepe", "fcpe", "yin", "piptrack", "fcn"]:
        if m in method: visible = True
        if m in hybrid_method: visible = True

        if visible: break
        else: visible = False
    
    return {"visible": visible, "__type__": "update"}

def visible(value):
    return {"visible": value, "__type__": "update"}

def valueFalse_interactive(value): 
    return {"value": False, "interactive": value, "__type__": "update"}

def valueEmpty_visible1(value): 
    return {"value": "", "visible": value, "__type__": "update"}

def pitch_guidance_lock(vocoders):
    return {"value": True, "interactive": vocoders == "Default", "__type__": "update"}

def vocoders_lock(pitch, vocoders):
    return {"value": vocoders if pitch else "Default", "interactive": pitch, "__type__": "update"}

def unlock_f0(value):
    return {"choices": method_f0_full if value else method_f0, "value": "rmvpe", "__type__": "update"} 

def unlock_vocoder(value, vocoder):
    return {"value": vocoder if value == "v2" else "Default", "interactive": value == "v2", "__type__": "update"} 

def unlock_ver(value, vocoder):
    return {"value": "v2" if vocoder == "Default" else value, "interactive": vocoder == "Default", "__type__": "update"}

def visible_embedders(value):
    return {"visible": value != "spin", "__type__": "update"}

def change_fp(fp):
    fp16 = fp == "fp16"

    if fp16 and config.device in ["cpu", "mps", "ocl:0"]: 
        gr_warning(translations["fp16_not_support"])
        return "fp32"
    else:
        gr_info(translations["start_update_precision"])

        configs = json.load(open(configs_json, "r"))
        configs["fp16"] = config.is_half = fp16

        with open(configs_json, "w") as f:
            json.dump(configs, f, indent=4)

        gr_info(translations["success"])
        return "fp16" if fp16 else "fp32"
    
def process_output(file_path):
    if config.configs.get("delete_exists_file", True):
        if os.path.exists(file_path): os.remove(file_path)
        return file_path
    else:
        if not os.path.exists(file_path): return file_path
        file = os.path.splitext(os.path.basename(file_path))

        index = 1
        while 1:
            file_path = os.path.join(os.path.dirname(file_path), f"{file[0]}_{index}{file[1]}")
            if not os.path.exists(file_path): return file_path
            index += 1

def shutil_move(input_path, output_path):
    output_path = os.path.join(output_path, os.path.basename(input_path)) if os.path.isdir(output_path) else output_path

    return shutil.move(input_path, process_output(output_path)) if os.path.exists(output_path) else shutil.move(input_path, output_path)