File size: 13,538 Bytes
1e4a2ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import math
import torch

import torch.nn.functional as F

from torch import nn, einsum
from functools import partial
from einops import rearrange, repeat, pack, unpack

def exists(val):
    return val is not None

def default(value, d):
    return value if exists(value) else d

def empty(tensor):
    return tensor.numel() == 0

def pad_to_multiple(tensor, multiple, dim=-1, value=0):
    seqlen = tensor.shape[dim]
    m = seqlen / multiple
    if m.is_integer(): return False, tensor
    return True, F.pad(tensor, (*((0,) * (-1 - dim) * 2), 0, (math.ceil(m) * multiple - seqlen)), value = value)

def look_around(x, backward = 1, forward = 0, pad_value = -1, dim = 2):
    t = x.shape[1]
    dims = (len(x.shape) - dim) * (0, 0)
    padded_x = F.pad(x, (*dims, backward, forward), value = pad_value)
    return torch.cat([padded_x[:, ind:(ind + t), ...] for ind in range(forward + backward + 1)], dim = dim)

def rotate_half(x):
    x1, x2 = rearrange(x, 'b ... (r d) -> b ... r d', r = 2).unbind(dim = -2)
    return torch.cat((-x2, x1), dim = -1)

def apply_rotary_pos_emb(q, k, freqs, scale = 1):
    q_len = q.shape[-2]
    q_freqs = freqs[..., -q_len:, :]
    inv_scale = scale ** -1
    if scale.ndim == 2: scale = scale[-q_len:, :]
    q = (q * q_freqs.cos() * scale) + (rotate_half(q) * q_freqs.sin() * scale)
    k = (k * freqs.cos() * inv_scale) + (rotate_half(k) * freqs.sin() * inv_scale)

    return q, k

def orthogonal_matrix_chunk(cols, qr_uniform_q=False, device=None):
    unstructured_block = torch.randn((cols, cols), device=device)
    q, r = torch.linalg.qr(unstructured_block.cpu(), mode="reduced")
    q, r = map(lambda t: t.to(device), (q, r))
    if qr_uniform_q:
        d = torch.diag(r, 0)
        q *= d.sign()

    return q.t()

def gaussian_orthogonal_random_matrix(nb_rows, nb_columns, scaling=0, qr_uniform_q=False, device=None):
    nb_full_blocks = int(nb_rows / nb_columns)
    block_list = []
    for _ in range(nb_full_blocks):
        block_list.append(orthogonal_matrix_chunk(nb_columns, qr_uniform_q=qr_uniform_q, device=device))

    remaining_rows = nb_rows - nb_full_blocks * nb_columns
    if remaining_rows > 0: block_list.append(orthogonal_matrix_chunk(nb_columns, qr_uniform_q=qr_uniform_q, device=device)[:remaining_rows])
    if scaling == 0: multiplier = torch.randn((nb_rows, nb_columns), device=device).norm(dim=1)
    elif scaling == 1: multiplier = math.sqrt((float(nb_columns))) * torch.ones((nb_rows,), device=device)
    else: raise ValueError(f"{scaling} != 0, 1")

    return torch.diag(multiplier) @ torch.cat(block_list)

def linear_attention(q, k, v):
    return einsum("...ed,...nd->...ne", k, q) if v is None else einsum("...de,...nd,...n->...ne", einsum("...nd,...ne->...de", k, v), q, 1.0 / (einsum("...nd,...d->...n", q, k.sum(dim=-2).type_as(q)) + 1e-8))

def softmax_kernel(data, *, projection_matrix, is_query, normalize_data=True, eps=1e-4, device=None):
    b, h, *_ = data.shape
    
    data_normalizer = (data.shape[-1] ** -0.25) if normalize_data else 1.0
    ratio = projection_matrix.shape[0] ** -0.5
    data_dash = torch.einsum("...id,...jd->...ij", (data_normalizer * data), repeat(projection_matrix, "j d -> b h j d", b=b, h=h).type_as(data))
    diag_data = ((torch.sum(data**2, dim=-1) / 2.0) * (data_normalizer**2)).unsqueeze(dim=-1)

    return (ratio * (torch.exp(data_dash - diag_data - torch.max(data_dash, dim=-1, keepdim=True).values) + eps) if is_query else ratio * (torch.exp(data_dash - diag_data + eps))).type_as(data)

class SinusoidalEmbeddings(nn.Module):
    def __init__(self, dim, scale_base = None, use_xpos = False, theta = 10000):
        super().__init__()
        inv_freq = 1. / (theta ** (torch.arange(0, dim, 2).float() / dim))
        self.register_buffer('inv_freq', inv_freq)
        self.use_xpos = use_xpos
        self.scale_base = scale_base
        assert not (use_xpos and not exists(scale_base))
        scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim)
        self.register_buffer('scale', scale, persistent = False)

    def forward(self, x):
        seq_len, device = x.shape[-2], x.device
        t = torch.arange(seq_len, device = x.device).type_as(self.inv_freq)

        freqs = torch.einsum('i , j -> i j', t, self.inv_freq)
        freqs =  torch.cat((freqs, freqs), dim = -1)

        if not self.use_xpos: return freqs, torch.ones(1, device = device)

        power = (t - (seq_len // 2)) / self.scale_base
        scale = self.scale ** rearrange(power, 'n -> n 1')

        return freqs, torch.cat((scale, scale), dim = -1)

class LocalAttention(nn.Module):
    def __init__(self, window_size, causal = False, look_backward = 1, look_forward = None, dropout = 0., shared_qk = False, rel_pos_emb_config = None, dim = None, autopad = False, exact_windowsize = False, scale = None, use_rotary_pos_emb = True, use_xpos = False, xpos_scale_base = None):
        super().__init__()
        look_forward = default(look_forward, 0 if causal else 1)
        assert not (causal and look_forward > 0)
        self.scale = scale
        self.window_size = window_size
        self.autopad = autopad
        self.exact_windowsize = exact_windowsize
        self.causal = causal
        self.look_backward = look_backward
        self.look_forward = look_forward
        self.dropout = nn.Dropout(dropout)
        self.shared_qk = shared_qk
        self.rel_pos = None
        self.use_xpos = use_xpos
        if use_rotary_pos_emb and (exists(rel_pos_emb_config) or exists(dim)): 
            if exists(rel_pos_emb_config): dim = rel_pos_emb_config[0]
            self.rel_pos = SinusoidalEmbeddings(dim, use_xpos = use_xpos, scale_base = default(xpos_scale_base, window_size // 2))

    def forward(self, q, k, v, mask = None, input_mask = None, attn_bias = None, window_size = None):
        mask = default(mask, input_mask)
        assert not (exists(window_size) and not self.use_xpos)

        _, autopad, pad_value, window_size, causal, look_backward, look_forward, shared_qk = q.shape, self.autopad, -1, default(window_size, self.window_size), self.causal, self.look_backward, self.look_forward, self.shared_qk
        (q, packed_shape), (k, _), (v, _) = map(lambda t: pack([t], '* n d'), (q, k, v))

        if autopad:
            orig_seq_len = q.shape[1]
            (_, q), (_, k), (_, v) = map(lambda t: pad_to_multiple(t, self.window_size, dim = -2), (q, k, v))

        b, n, dim_head, device, dtype = *q.shape, q.device, q.dtype
        scale = default(self.scale, dim_head ** -0.5)

        assert (n % window_size) == 0
        windows = n // window_size

        if shared_qk: k = F.normalize(k, dim = -1).type(k.dtype)

        seq = torch.arange(n, device = device)
        b_t = rearrange(seq, '(w n) -> 1 w n', w = windows, n = window_size)
        bq, bk, bv = map(lambda t: rearrange(t, 'b (w n) d -> b w n d', w = windows), (q, k, v))

        bq = bq * scale
        look_around_kwargs = dict(backward =  look_backward, forward =  look_forward, pad_value = pad_value)

        bk = look_around(bk, **look_around_kwargs)
        bv = look_around(bv, **look_around_kwargs)

        if exists(self.rel_pos):
            pos_emb, xpos_scale = self.rel_pos(bk)
            bq, bk = apply_rotary_pos_emb(bq, bk, pos_emb, scale = xpos_scale)

        bq_t = b_t
        bq_k = look_around(b_t, **look_around_kwargs)
        bq_t = rearrange(bq_t, '... i -> ... i 1')
        bq_k = rearrange(bq_k, '... j -> ... 1 j')

        pad_mask = bq_k == pad_value
        sim = einsum('b h i e, b h j e -> b h i j', bq, bk)

        if exists(attn_bias):
            heads = attn_bias.shape[0]
            assert (b % heads) == 0

            attn_bias = repeat(attn_bias, 'h i j -> (b h) 1 i j', b = b // heads)
            sim = sim + attn_bias

        mask_value = -torch.finfo(sim.dtype).max
        if shared_qk:
            self_mask = bq_t == bq_k
            sim = sim.masked_fill(self_mask, -5e4)
            del self_mask

        if causal:
            causal_mask = bq_t < bq_k
            if self.exact_windowsize: causal_mask = causal_mask | (bq_t > (bq_k + (self.window_size * self.look_backward)))
            sim = sim.masked_fill(causal_mask, mask_value)
            del causal_mask

        sim = sim.masked_fill(((bq_k - (self.window_size * self.look_forward)) > bq_t) | (bq_t > (bq_k + (self.window_size * self.look_backward))) | pad_mask, mask_value) if not causal and self.exact_windowsize else sim.masked_fill(pad_mask, mask_value)

        if exists(mask):
            batch = mask.shape[0]
            assert (b % batch) == 0

            h = b // mask.shape[0]
            if autopad: _, mask = pad_to_multiple(mask, window_size, dim = -1, value = False)

            mask = repeat(rearrange(look_around(rearrange(mask, '... (w n) -> (...) w n', w = windows, n = window_size), **{**look_around_kwargs, 'pad_value': False}), '... j -> ... 1 j'), 'b ... -> (b h) ...', h = h)
            sim = sim.masked_fill(~mask, mask_value)

            del mask

        out = rearrange(einsum('b h i j, b h j e -> b h i e', self.dropout(sim.softmax(dim = -1)), bv), 'b w n d -> b (w n) d')
        if autopad: out = out[:, :orig_seq_len, :]

        out, *_ = unpack(out, packed_shape, '* n d')
        return out
    
class FastAttention(nn.Module):
    def __init__(self, dim_heads, nb_features=None, ortho_scaling=0, causal=False, generalized_attention=False, kernel_fn=nn.ReLU(), qr_uniform_q=False, no_projection=False):
        super().__init__()
        nb_features = default(nb_features, int(dim_heads * math.log(dim_heads)))
        self.dim_heads = dim_heads
        self.nb_features = nb_features
        self.ortho_scaling = ortho_scaling
        self.create_projection = partial(gaussian_orthogonal_random_matrix, nb_rows=self.nb_features, nb_columns=dim_heads, scaling=ortho_scaling, qr_uniform_q=qr_uniform_q)
        projection_matrix = self.create_projection()
        self.register_buffer("projection_matrix", projection_matrix)
        self.generalized_attention = generalized_attention
        self.kernel_fn = kernel_fn
        self.no_projection = no_projection
        self.causal = causal

    @torch.no_grad()
    def redraw_projection_matrix(self):
        projections = self.create_projection()
        self.projection_matrix.copy_(projections)
        del projections

    def forward(self, q, k, v):
        if self.no_projection: q, k = q.softmax(dim=-1), (torch.exp(k) if self.causal else k.softmax(dim=-2)) 
        else:
            create_kernel = partial(softmax_kernel, projection_matrix=self.projection_matrix, device=q.device)
            q, k = create_kernel(q, is_query=True), create_kernel(k, is_query=False)

        attn_fn = linear_attention if not self.causal else self.causal_linear_fn
        return attn_fn(q, k, None) if v is None else attn_fn(q, k, v)

class SelfAttention(nn.Module):
    def __init__(self, dim, causal=False, heads=8, dim_head=64, local_heads=0, local_window_size=256, nb_features=None, feature_redraw_interval=1000, generalized_attention=False, kernel_fn=nn.ReLU(), qr_uniform_q=False, dropout=0.0, no_projection=False):
        super().__init__()
        assert dim % heads == 0
        dim_head = default(dim_head, dim // heads)
        inner_dim = dim_head * heads
        self.fast_attention = FastAttention(dim_head, nb_features, causal=causal, generalized_attention=generalized_attention, kernel_fn=kernel_fn, qr_uniform_q=qr_uniform_q, no_projection=no_projection)
        self.heads = heads
        self.global_heads = heads - local_heads
        self.local_attn = (LocalAttention(window_size=local_window_size, causal=causal, autopad=True, dropout=dropout, look_forward=int(not causal), rel_pos_emb_config=(dim_head, local_heads)) if local_heads > 0 else None)
        self.to_q = nn.Linear(dim, inner_dim)
        self.to_k = nn.Linear(dim, inner_dim)
        self.to_v = nn.Linear(dim, inner_dim)
        self.to_out = nn.Linear(inner_dim, dim)
        self.dropout = nn.Dropout(dropout)

    @torch.no_grad()
    def redraw_projection_matrix(self):
        self.fast_attention.redraw_projection_matrix()

    def forward(self, x, context=None, mask=None, context_mask=None, name=None, inference=False, **kwargs):
        _, _, _, h, gh = *x.shape, self.heads, self.global_heads
        cross_attend = exists(context)
        context = default(context, x)
        context_mask = default(context_mask, mask) if not cross_attend else context_mask

        q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), (self.to_q(x), self.to_k(context), self.to_v(context)))
        (q, lq), (k, lk), (v, lv) = map(lambda t: (t[:, :gh], t[:, gh:]), (q, k, v))

        attn_outs = []

        if not empty(q):
            if exists(context_mask): v.masked_fill_(~context_mask[:, None, :, None], 0.0)
            if cross_attend: pass  
            else: out = self.fast_attention(q, k, v)

            attn_outs.append(out)

        if not empty(lq):
            assert (not cross_attend), "not cross_attend"

            out = self.local_attn(lq, lk, lv, input_mask=mask)
            attn_outs.append(out)

        return self.dropout(self.to_out(rearrange(torch.cat(attn_outs, dim=1), "b h n d -> b n (h d)")))