File size: 13,538 Bytes
1e4a2ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
import math
import torch
import torch.nn.functional as F
from torch import nn, einsum
from functools import partial
from einops import rearrange, repeat, pack, unpack
def exists(val):
return val is not None
def default(value, d):
return value if exists(value) else d
def empty(tensor):
return tensor.numel() == 0
def pad_to_multiple(tensor, multiple, dim=-1, value=0):
seqlen = tensor.shape[dim]
m = seqlen / multiple
if m.is_integer(): return False, tensor
return True, F.pad(tensor, (*((0,) * (-1 - dim) * 2), 0, (math.ceil(m) * multiple - seqlen)), value = value)
def look_around(x, backward = 1, forward = 0, pad_value = -1, dim = 2):
t = x.shape[1]
dims = (len(x.shape) - dim) * (0, 0)
padded_x = F.pad(x, (*dims, backward, forward), value = pad_value)
return torch.cat([padded_x[:, ind:(ind + t), ...] for ind in range(forward + backward + 1)], dim = dim)
def rotate_half(x):
x1, x2 = rearrange(x, 'b ... (r d) -> b ... r d', r = 2).unbind(dim = -2)
return torch.cat((-x2, x1), dim = -1)
def apply_rotary_pos_emb(q, k, freqs, scale = 1):
q_len = q.shape[-2]
q_freqs = freqs[..., -q_len:, :]
inv_scale = scale ** -1
if scale.ndim == 2: scale = scale[-q_len:, :]
q = (q * q_freqs.cos() * scale) + (rotate_half(q) * q_freqs.sin() * scale)
k = (k * freqs.cos() * inv_scale) + (rotate_half(k) * freqs.sin() * inv_scale)
return q, k
def orthogonal_matrix_chunk(cols, qr_uniform_q=False, device=None):
unstructured_block = torch.randn((cols, cols), device=device)
q, r = torch.linalg.qr(unstructured_block.cpu(), mode="reduced")
q, r = map(lambda t: t.to(device), (q, r))
if qr_uniform_q:
d = torch.diag(r, 0)
q *= d.sign()
return q.t()
def gaussian_orthogonal_random_matrix(nb_rows, nb_columns, scaling=0, qr_uniform_q=False, device=None):
nb_full_blocks = int(nb_rows / nb_columns)
block_list = []
for _ in range(nb_full_blocks):
block_list.append(orthogonal_matrix_chunk(nb_columns, qr_uniform_q=qr_uniform_q, device=device))
remaining_rows = nb_rows - nb_full_blocks * nb_columns
if remaining_rows > 0: block_list.append(orthogonal_matrix_chunk(nb_columns, qr_uniform_q=qr_uniform_q, device=device)[:remaining_rows])
if scaling == 0: multiplier = torch.randn((nb_rows, nb_columns), device=device).norm(dim=1)
elif scaling == 1: multiplier = math.sqrt((float(nb_columns))) * torch.ones((nb_rows,), device=device)
else: raise ValueError(f"{scaling} != 0, 1")
return torch.diag(multiplier) @ torch.cat(block_list)
def linear_attention(q, k, v):
return einsum("...ed,...nd->...ne", k, q) if v is None else einsum("...de,...nd,...n->...ne", einsum("...nd,...ne->...de", k, v), q, 1.0 / (einsum("...nd,...d->...n", q, k.sum(dim=-2).type_as(q)) + 1e-8))
def softmax_kernel(data, *, projection_matrix, is_query, normalize_data=True, eps=1e-4, device=None):
b, h, *_ = data.shape
data_normalizer = (data.shape[-1] ** -0.25) if normalize_data else 1.0
ratio = projection_matrix.shape[0] ** -0.5
data_dash = torch.einsum("...id,...jd->...ij", (data_normalizer * data), repeat(projection_matrix, "j d -> b h j d", b=b, h=h).type_as(data))
diag_data = ((torch.sum(data**2, dim=-1) / 2.0) * (data_normalizer**2)).unsqueeze(dim=-1)
return (ratio * (torch.exp(data_dash - diag_data - torch.max(data_dash, dim=-1, keepdim=True).values) + eps) if is_query else ratio * (torch.exp(data_dash - diag_data + eps))).type_as(data)
class SinusoidalEmbeddings(nn.Module):
def __init__(self, dim, scale_base = None, use_xpos = False, theta = 10000):
super().__init__()
inv_freq = 1. / (theta ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer('inv_freq', inv_freq)
self.use_xpos = use_xpos
self.scale_base = scale_base
assert not (use_xpos and not exists(scale_base))
scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim)
self.register_buffer('scale', scale, persistent = False)
def forward(self, x):
seq_len, device = x.shape[-2], x.device
t = torch.arange(seq_len, device = x.device).type_as(self.inv_freq)
freqs = torch.einsum('i , j -> i j', t, self.inv_freq)
freqs = torch.cat((freqs, freqs), dim = -1)
if not self.use_xpos: return freqs, torch.ones(1, device = device)
power = (t - (seq_len // 2)) / self.scale_base
scale = self.scale ** rearrange(power, 'n -> n 1')
return freqs, torch.cat((scale, scale), dim = -1)
class LocalAttention(nn.Module):
def __init__(self, window_size, causal = False, look_backward = 1, look_forward = None, dropout = 0., shared_qk = False, rel_pos_emb_config = None, dim = None, autopad = False, exact_windowsize = False, scale = None, use_rotary_pos_emb = True, use_xpos = False, xpos_scale_base = None):
super().__init__()
look_forward = default(look_forward, 0 if causal else 1)
assert not (causal and look_forward > 0)
self.scale = scale
self.window_size = window_size
self.autopad = autopad
self.exact_windowsize = exact_windowsize
self.causal = causal
self.look_backward = look_backward
self.look_forward = look_forward
self.dropout = nn.Dropout(dropout)
self.shared_qk = shared_qk
self.rel_pos = None
self.use_xpos = use_xpos
if use_rotary_pos_emb and (exists(rel_pos_emb_config) or exists(dim)):
if exists(rel_pos_emb_config): dim = rel_pos_emb_config[0]
self.rel_pos = SinusoidalEmbeddings(dim, use_xpos = use_xpos, scale_base = default(xpos_scale_base, window_size // 2))
def forward(self, q, k, v, mask = None, input_mask = None, attn_bias = None, window_size = None):
mask = default(mask, input_mask)
assert not (exists(window_size) and not self.use_xpos)
_, autopad, pad_value, window_size, causal, look_backward, look_forward, shared_qk = q.shape, self.autopad, -1, default(window_size, self.window_size), self.causal, self.look_backward, self.look_forward, self.shared_qk
(q, packed_shape), (k, _), (v, _) = map(lambda t: pack([t], '* n d'), (q, k, v))
if autopad:
orig_seq_len = q.shape[1]
(_, q), (_, k), (_, v) = map(lambda t: pad_to_multiple(t, self.window_size, dim = -2), (q, k, v))
b, n, dim_head, device, dtype = *q.shape, q.device, q.dtype
scale = default(self.scale, dim_head ** -0.5)
assert (n % window_size) == 0
windows = n // window_size
if shared_qk: k = F.normalize(k, dim = -1).type(k.dtype)
seq = torch.arange(n, device = device)
b_t = rearrange(seq, '(w n) -> 1 w n', w = windows, n = window_size)
bq, bk, bv = map(lambda t: rearrange(t, 'b (w n) d -> b w n d', w = windows), (q, k, v))
bq = bq * scale
look_around_kwargs = dict(backward = look_backward, forward = look_forward, pad_value = pad_value)
bk = look_around(bk, **look_around_kwargs)
bv = look_around(bv, **look_around_kwargs)
if exists(self.rel_pos):
pos_emb, xpos_scale = self.rel_pos(bk)
bq, bk = apply_rotary_pos_emb(bq, bk, pos_emb, scale = xpos_scale)
bq_t = b_t
bq_k = look_around(b_t, **look_around_kwargs)
bq_t = rearrange(bq_t, '... i -> ... i 1')
bq_k = rearrange(bq_k, '... j -> ... 1 j')
pad_mask = bq_k == pad_value
sim = einsum('b h i e, b h j e -> b h i j', bq, bk)
if exists(attn_bias):
heads = attn_bias.shape[0]
assert (b % heads) == 0
attn_bias = repeat(attn_bias, 'h i j -> (b h) 1 i j', b = b // heads)
sim = sim + attn_bias
mask_value = -torch.finfo(sim.dtype).max
if shared_qk:
self_mask = bq_t == bq_k
sim = sim.masked_fill(self_mask, -5e4)
del self_mask
if causal:
causal_mask = bq_t < bq_k
if self.exact_windowsize: causal_mask = causal_mask | (bq_t > (bq_k + (self.window_size * self.look_backward)))
sim = sim.masked_fill(causal_mask, mask_value)
del causal_mask
sim = sim.masked_fill(((bq_k - (self.window_size * self.look_forward)) > bq_t) | (bq_t > (bq_k + (self.window_size * self.look_backward))) | pad_mask, mask_value) if not causal and self.exact_windowsize else sim.masked_fill(pad_mask, mask_value)
if exists(mask):
batch = mask.shape[0]
assert (b % batch) == 0
h = b // mask.shape[0]
if autopad: _, mask = pad_to_multiple(mask, window_size, dim = -1, value = False)
mask = repeat(rearrange(look_around(rearrange(mask, '... (w n) -> (...) w n', w = windows, n = window_size), **{**look_around_kwargs, 'pad_value': False}), '... j -> ... 1 j'), 'b ... -> (b h) ...', h = h)
sim = sim.masked_fill(~mask, mask_value)
del mask
out = rearrange(einsum('b h i j, b h j e -> b h i e', self.dropout(sim.softmax(dim = -1)), bv), 'b w n d -> b (w n) d')
if autopad: out = out[:, :orig_seq_len, :]
out, *_ = unpack(out, packed_shape, '* n d')
return out
class FastAttention(nn.Module):
def __init__(self, dim_heads, nb_features=None, ortho_scaling=0, causal=False, generalized_attention=False, kernel_fn=nn.ReLU(), qr_uniform_q=False, no_projection=False):
super().__init__()
nb_features = default(nb_features, int(dim_heads * math.log(dim_heads)))
self.dim_heads = dim_heads
self.nb_features = nb_features
self.ortho_scaling = ortho_scaling
self.create_projection = partial(gaussian_orthogonal_random_matrix, nb_rows=self.nb_features, nb_columns=dim_heads, scaling=ortho_scaling, qr_uniform_q=qr_uniform_q)
projection_matrix = self.create_projection()
self.register_buffer("projection_matrix", projection_matrix)
self.generalized_attention = generalized_attention
self.kernel_fn = kernel_fn
self.no_projection = no_projection
self.causal = causal
@torch.no_grad()
def redraw_projection_matrix(self):
projections = self.create_projection()
self.projection_matrix.copy_(projections)
del projections
def forward(self, q, k, v):
if self.no_projection: q, k = q.softmax(dim=-1), (torch.exp(k) if self.causal else k.softmax(dim=-2))
else:
create_kernel = partial(softmax_kernel, projection_matrix=self.projection_matrix, device=q.device)
q, k = create_kernel(q, is_query=True), create_kernel(k, is_query=False)
attn_fn = linear_attention if not self.causal else self.causal_linear_fn
return attn_fn(q, k, None) if v is None else attn_fn(q, k, v)
class SelfAttention(nn.Module):
def __init__(self, dim, causal=False, heads=8, dim_head=64, local_heads=0, local_window_size=256, nb_features=None, feature_redraw_interval=1000, generalized_attention=False, kernel_fn=nn.ReLU(), qr_uniform_q=False, dropout=0.0, no_projection=False):
super().__init__()
assert dim % heads == 0
dim_head = default(dim_head, dim // heads)
inner_dim = dim_head * heads
self.fast_attention = FastAttention(dim_head, nb_features, causal=causal, generalized_attention=generalized_attention, kernel_fn=kernel_fn, qr_uniform_q=qr_uniform_q, no_projection=no_projection)
self.heads = heads
self.global_heads = heads - local_heads
self.local_attn = (LocalAttention(window_size=local_window_size, causal=causal, autopad=True, dropout=dropout, look_forward=int(not causal), rel_pos_emb_config=(dim_head, local_heads)) if local_heads > 0 else None)
self.to_q = nn.Linear(dim, inner_dim)
self.to_k = nn.Linear(dim, inner_dim)
self.to_v = nn.Linear(dim, inner_dim)
self.to_out = nn.Linear(inner_dim, dim)
self.dropout = nn.Dropout(dropout)
@torch.no_grad()
def redraw_projection_matrix(self):
self.fast_attention.redraw_projection_matrix()
def forward(self, x, context=None, mask=None, context_mask=None, name=None, inference=False, **kwargs):
_, _, _, h, gh = *x.shape, self.heads, self.global_heads
cross_attend = exists(context)
context = default(context, x)
context_mask = default(context_mask, mask) if not cross_attend else context_mask
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), (self.to_q(x), self.to_k(context), self.to_v(context)))
(q, lq), (k, lk), (v, lv) = map(lambda t: (t[:, :gh], t[:, gh:]), (q, k, v))
attn_outs = []
if not empty(q):
if exists(context_mask): v.masked_fill_(~context_mask[:, None, :, None], 0.0)
if cross_attend: pass
else: out = self.fast_attention(q, k, v)
attn_outs.append(out)
if not empty(lq):
assert (not cross_attend), "not cross_attend"
out = self.local_attn(lq, lk, lv, input_mask=mask)
attn_outs.append(out)
return self.dropout(self.to_out(rearrange(torch.cat(attn_outs, dim=1), "b h n d -> b n (h d)"))) |