File size: 17,927 Bytes
1e4a2ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import os
import sys
import torch

import numpy as np
import torch.nn as nn
import onnxruntime as ort
import torch.nn.functional as F

from einops import rearrange
from torch.nn.utils.parametrizations import weight_norm

sys.path.append(os.getcwd())
os.environ["LRU_CACHE_CAPACITY"] = "3"

from main.library.predictors.FCPE.wav2mel import spawn_wav2mel, Wav2Mel
from main.library.predictors.FCPE.encoder import EncoderLayer, ConformerNaiveEncoder
from main.library.predictors.FCPE.utils import l2_regularization, ensemble_f0, batch_interp_with_replacement_detach, decrypt_model, DotDict

class PCmer(nn.Module):
    def __init__(self, num_layers, num_heads, dim_model, dim_keys, dim_values, residual_dropout, attention_dropout):
        super().__init__()
        self.num_layers = num_layers
        self.num_heads = num_heads
        self.dim_model = dim_model
        self.dim_values = dim_values
        self.dim_keys = dim_keys
        self.residual_dropout = residual_dropout
        self.attention_dropout = attention_dropout
        self._layers = nn.ModuleList([EncoderLayer(self) for _ in range(num_layers)])

    def forward(self, phone, mask=None):
        for layer in self._layers:
            phone = layer(phone, mask)

        return phone

class CFNaiveMelPE(nn.Module):
    def __init__(self, input_channels, out_dims, hidden_dims = 512, n_layers = 6, n_heads = 8, f0_max = 1975.5, f0_min = 32.70, use_fa_norm = False, conv_only = False, conv_dropout = 0, atten_dropout = 0, use_harmonic_emb = False):
        super().__init__()
        self.input_channels = input_channels
        self.out_dims = out_dims
        self.hidden_dims = hidden_dims
        self.n_layers = n_layers
        self.n_heads = n_heads
        self.f0_max = f0_max
        self.f0_min = f0_min
        self.use_fa_norm = use_fa_norm
        self.residual_dropout = 0.1  
        self.attention_dropout = 0.1  
        self.harmonic_emb = nn.Embedding(9, hidden_dims) if use_harmonic_emb else None
        self.input_stack = nn.Sequential(nn.Conv1d(input_channels, hidden_dims, 3, 1, 1), nn.GroupNorm(4, hidden_dims), nn.LeakyReLU(), nn.Conv1d(hidden_dims, hidden_dims, 3, 1, 1))
        self.net = ConformerNaiveEncoder(num_layers=n_layers, num_heads=n_heads, dim_model=hidden_dims, use_norm=use_fa_norm, conv_only=conv_only, conv_dropout=conv_dropout, atten_dropout=atten_dropout)
        self.norm = nn.LayerNorm(hidden_dims)
        self.output_proj = weight_norm(nn.Linear(hidden_dims, out_dims))
        self.cent_table_b = torch.linspace(self.f0_to_cent(torch.Tensor([f0_min]))[0], self.f0_to_cent(torch.Tensor([f0_max]))[0], out_dims).detach()
        self.register_buffer("cent_table", self.cent_table_b)
        self.gaussian_blurred_cent_mask_b = (1200 * torch.log2(torch.Tensor([self.f0_max / 10.])))[0].detach()
        self.register_buffer("gaussian_blurred_cent_mask", self.gaussian_blurred_cent_mask_b)

    def forward(self, x, _h_emb=None):
        x = self.input_stack(x.transpose(-1, -2)).transpose(-1, -2)
        if self.harmonic_emb is not None: x = x + self.harmonic_emb(torch.LongTensor([0]).to(x.device)) if _h_emb is None else x + self.harmonic_emb(torch.LongTensor([int(_h_emb)]).to(x.device))
        return torch.sigmoid(self.output_proj(self.norm(self.net(x))))

    @torch.no_grad()
    def latent2cents_decoder(self, y, threshold = 0.05, mask = True):
        B, N, _ = y.size()
        ci = self.cent_table[None, None, :].expand(B, N, -1)
        rtn = torch.sum(ci * y, dim=-1, keepdim=True) / torch.sum(y, dim=-1, keepdim=True)  

        if mask:
            confident = torch.max(y, dim=-1, keepdim=True)[0]
            confident_mask = torch.ones_like(confident)
            confident_mask[confident <= threshold] = float("-INF")
            rtn = rtn * confident_mask

        return rtn  

    @torch.no_grad()
    def latent2cents_local_decoder(self, y, threshold = 0.05, mask = True):
        B, N, _ = y.size()
        ci = self.cent_table[None, None, :].expand(B, N, -1)
        confident, max_index = torch.max(y, dim=-1, keepdim=True)

        local_argmax_index = torch.arange(0, 9).to(max_index.device) + (max_index - 4)
        local_argmax_index[local_argmax_index < 0] = 0
        local_argmax_index[local_argmax_index >= self.out_dims] = self.out_dims - 1

        y_l = torch.gather(y, -1, local_argmax_index)
        rtn = torch.sum(torch.gather(ci, -1, local_argmax_index) * y_l, dim=-1, keepdim=True) / torch.sum(y_l, dim=-1, keepdim=True) 

        if mask:
            confident_mask = torch.ones_like(confident)
            confident_mask[confident <= threshold] = float("-INF")
            rtn = rtn * confident_mask

        return rtn  

    @torch.no_grad()
    def infer(self, mel, decoder = "local_argmax", threshold = 0.05):
        latent = self.forward(mel)
        if decoder == "argmax": cents = self.latent2cents_local_decoder
        elif decoder == "local_argmax": cents = self.latent2cents_local_decoder

        return self.cent_to_f0(cents(latent, threshold=threshold))  

    @torch.no_grad()
    def cent_to_f0(self, cent: torch.Tensor) -> torch.Tensor:
        return 10 * 2 ** (cent / 1200)

    @torch.no_grad()
    def f0_to_cent(self, f0):
        return 1200 * torch.log2(f0 / 10)

class FCPE_LEGACY(nn.Module):
    def __init__(self, input_channel=128, out_dims=360, n_layers=12, n_chans=512, loss_mse_scale=10, loss_l2_regularization=False, loss_l2_regularization_scale=1, loss_grad1_mse=False, loss_grad1_mse_scale=1, f0_max=1975.5, f0_min=32.70, confidence=False, threshold=0.05, use_input_conv=True):
        super().__init__()
        self.loss_mse_scale = loss_mse_scale
        self.loss_l2_regularization = loss_l2_regularization
        self.loss_l2_regularization_scale = loss_l2_regularization_scale
        self.loss_grad1_mse = loss_grad1_mse
        self.loss_grad1_mse_scale = loss_grad1_mse_scale
        self.f0_max = f0_max
        self.f0_min = f0_min
        self.confidence = confidence
        self.threshold = threshold
        self.use_input_conv = use_input_conv
        self.cent_table_b = torch.Tensor(np.linspace(self.f0_to_cent(torch.Tensor([f0_min]))[0], self.f0_to_cent(torch.Tensor([f0_max]))[0], out_dims))
        self.register_buffer("cent_table", self.cent_table_b)
        self.stack = nn.Sequential(nn.Conv1d(input_channel, n_chans, 3, 1, 1), nn.GroupNorm(4, n_chans), nn.LeakyReLU(), nn.Conv1d(n_chans, n_chans, 3, 1, 1))
        self.decoder = PCmer(num_layers=n_layers, num_heads=8, dim_model=n_chans, dim_keys=n_chans, dim_values=n_chans, residual_dropout=0.1, attention_dropout=0.1)
        self.norm = nn.LayerNorm(n_chans)
        self.n_out = out_dims
        self.dense_out = weight_norm(nn.Linear(n_chans, self.n_out))

    def forward(self, mel, infer=True, gt_f0=None, return_hz_f0=False, cdecoder="local_argmax", output_interp_target_length=None):
        if cdecoder == "argmax": self.cdecoder = self.cents_decoder
        elif cdecoder == "local_argmax": self.cdecoder = self.cents_local_decoder

        x = torch.sigmoid(self.dense_out(self.norm(self.decoder((self.stack(mel.transpose(1, 2)).transpose(1, 2) if self.use_input_conv else mel)))))

        if not infer:
            loss_all = self.loss_mse_scale * F.binary_cross_entropy(x, self.gaussian_blurred_cent(self.f0_to_cent(gt_f0)))
            if self.loss_l2_regularization: loss_all = loss_all + l2_regularization(model=self, l2_alpha=self.loss_l2_regularization_scale)
            x = loss_all
        else:
            x = self.cent_to_f0(self.cdecoder(x))
            x = (1 + x / 700).log() if not return_hz_f0 else x

        if output_interp_target_length is not None: 
            x = F.interpolate(torch.where(x == 0, float("nan"), x).transpose(1, 2), size=int(output_interp_target_length), mode="linear").transpose(1, 2)
            x = torch.where(x.isnan(), float(0.0), x)

        return x

    def cents_decoder(self, y, mask=True):
        B, N, _ = y.size()
        rtn = torch.sum(self.cent_table[None, None, :].expand(B, N, -1) * y, dim=-1, keepdim=True) / torch.sum(y, dim=-1, keepdim=True)

        if mask:
            confident = torch.max(y, dim=-1, keepdim=True)[0]
            confident_mask = torch.ones_like(confident)
            confident_mask[confident <= self.threshold] = float("-INF")
            rtn = rtn * confident_mask

        return (rtn, confident) if self.confidence else rtn

    def cents_local_decoder(self, y, mask=True):
        B, N, _ = y.size()

        confident, max_index = torch.max(y, dim=-1, keepdim=True)
        local_argmax_index = torch.clamp(torch.arange(0, 9).to(max_index.device) + (max_index - 4), 0, self.n_out - 1)
        y_l = torch.gather(y, -1, local_argmax_index)
        rtn = torch.sum(torch.gather(self.cent_table[None, None, :].expand(B, N, -1), -1, local_argmax_index) * y_l, dim=-1, keepdim=True) / torch.sum(y_l, dim=-1, keepdim=True)

        if mask:
            confident_mask = torch.ones_like(confident)
            confident_mask[confident <= self.threshold] = float("-INF")
            rtn = rtn * confident_mask

        return (rtn, confident) if self.confidence else rtn

    def cent_to_f0(self, cent):
        return 10.0 * 2 ** (cent / 1200.0)

    def f0_to_cent(self, f0):
        return 1200.0 * torch.log2(f0 / 10.0)

    def gaussian_blurred_cent(self, cents):
        B, N, _ = cents.size()
        return torch.exp(-torch.square(self.cent_table[None, None, :].expand(B, N, -1) - cents) / 1250) * (cents > 0.1) & (cents < (1200.0 * np.log2(self.f0_max / 10.0))).float()

class InferCFNaiveMelPE(torch.nn.Module):
    def __init__(self, args, state_dict):
        super().__init__()
        self.wav2mel = spawn_wav2mel(args, device="cpu")
        self.model = CFNaiveMelPE(input_channels=args.mel.num_mels, out_dims=args.model.out_dims, hidden_dims=args.model.hidden_dims, n_layers=args.model.n_layers, n_heads=args.model.n_heads, f0_max=args.model.f0_max, f0_min=args.model.f0_min, use_fa_norm=args.model.use_fa_norm, conv_only=args.model.conv_only, conv_dropout=args.model.conv_dropout, atten_dropout=args.model.atten_dropout, use_harmonic_emb=False)
        self.model.load_state_dict(state_dict)
        self.model.eval()
        self.args_dict = dict(args)
        self.register_buffer("tensor_device_marker", torch.tensor(1.0).float(), persistent=False)

    def forward(self, wav, sr, decoder_mode = "local_argmax", threshold = 0.006, key_shifts = [0]):
        with torch.no_grad():
            mels = rearrange(torch.stack([self.wav2mel(wav.to(self.tensor_device_marker.device), sr, keyshift=keyshift) for keyshift in key_shifts], -1), "B T C K -> (B K) T C")
            f0s = rearrange(self.model.infer(mels, decoder=decoder_mode, threshold=threshold), "(B K) T 1 -> B T (K 1)", K=len(key_shifts))

        return f0s 

    def infer(self, wav, sr, decoder_mode = "local_argmax", threshold = 0.006, f0_min = None, f0_max = None, interp_uv = False, output_interp_target_length = None, return_uv = False, test_time_augmentation = False, tta_uv_penalty = 12.0, tta_key_shifts = [0, -12, 12], tta_use_origin_uv=False):
        if test_time_augmentation:
            assert len(tta_key_shifts) > 0
            flag = 0
            if tta_use_origin_uv:
                if 0 not in tta_key_shifts:
                    flag = 1
                    tta_key_shifts.append(0)

            tta_key_shifts.sort(key=lambda x: (x if x >= 0 else -x / 2))
            f0s = self.__call__(wav, sr, decoder_mode, threshold, tta_key_shifts)
            f0 = ensemble_f0(f0s[:, :, flag:], tta_key_shifts[flag:], tta_uv_penalty)
            f0_for_uv = f0s[:, :, [0]] if tta_use_origin_uv else f0
        else:
            f0 = self.__call__(wav, sr, decoder_mode, threshold)
            f0_for_uv = f0

        if f0_min is None: f0_min = self.args_dict["model"]["f0_min"]
        uv = (f0_for_uv < f0_min).type(f0_for_uv.dtype)
        f0 = f0 * (1 - uv)

        if interp_uv: f0 = batch_interp_with_replacement_detach(uv.squeeze(-1).bool(), f0.squeeze(-1)).unsqueeze(-1)
        if f0_max is not None: f0[f0 > f0_max] = f0_max
        if output_interp_target_length is not None: 
            f0 = F.interpolate(torch.where(f0 == 0, float("nan"), f0).transpose(1, 2), size=int(output_interp_target_length), mode="linear").transpose(1, 2)
            f0 = torch.where(f0.isnan(), float(0.0), f0)

        if return_uv: return f0, F.interpolate(uv.transpose(1, 2), size=int(output_interp_target_length), mode="nearest").transpose(1, 2)
        else: return f0

class FCPEInfer_LEGACY:
    def __init__(self, configs, model_path, device=None, dtype=torch.float32, providers=None, onnx=False, f0_min=50, f0_max=1100):
        if device is None: device = "cuda" if torch.cuda.is_available() else "cpu"
        self.device = device
        self.dtype = dtype
        self.onnx = onnx
        self.f0_min = f0_min
        self.f0_max = f0_max

        if self.onnx:
            sess_options = ort.SessionOptions()
            sess_options.log_severity_level = 3
            self.model = ort.InferenceSession(decrypt_model(configs, model_path), sess_options=sess_options, providers=providers)
        else:
            ckpt = torch.load(model_path, map_location=torch.device(self.device), weights_only=True)
            self.args = DotDict(ckpt["config"])
            model = FCPE_LEGACY(input_channel=self.args.model.input_channel, out_dims=self.args.model.out_dims, n_layers=self.args.model.n_layers, n_chans=self.args.model.n_chans, loss_mse_scale=self.args.loss.loss_mse_scale, loss_l2_regularization=self.args.loss.loss_l2_regularization, loss_l2_regularization_scale=self.args.loss.loss_l2_regularization_scale, loss_grad1_mse=self.args.loss.loss_grad1_mse, loss_grad1_mse_scale=self.args.loss.loss_grad1_mse_scale, f0_max=self.f0_max, f0_min=self.f0_min, confidence=self.args.model.confidence)
            model.to(self.device).to(self.dtype)
            model.load_state_dict(ckpt["model"])
            model.eval()
            self.model = model

    @torch.no_grad()
    def __call__(self, audio, sr, threshold=0.05, p_len=None):
        if not self.onnx: self.model.threshold = threshold
        self.wav2mel = Wav2Mel(device=self.device, dtype=self.dtype)

        return (torch.as_tensor(self.model.run([self.model.get_outputs()[0].name], {self.model.get_inputs()[0].name: self.wav2mel(audio=audio[None, :], sample_rate=sr).to(self.dtype).detach().cpu().numpy(), self.model.get_inputs()[1].name: np.array(threshold, dtype=np.float32)})[0], dtype=self.dtype, device=self.device) if self.onnx else self.model(mel=self.wav2mel(audio=audio[None, :], sample_rate=sr).to(self.dtype), infer=True, return_hz_f0=True, output_interp_target_length=p_len))

class FCPEInfer:
    def __init__(self, configs, model_path, device=None, dtype=torch.float32, providers=None, onnx=False, f0_min=50, f0_max=1100):
        if device is None: device = "cuda" if torch.cuda.is_available() else "cpu"
        self.device = device
        self.dtype = dtype
        self.onnx = onnx
        self.f0_min = f0_min
        self.f0_max = f0_max

        if self.onnx:
            sess_options = ort.SessionOptions()
            sess_options.log_severity_level = 3
            self.model = ort.InferenceSession(decrypt_model(configs, model_path), sess_options=sess_options, providers=providers)
        else:
            ckpt = torch.load(model_path, map_location=torch.device(device), weights_only=True)
            ckpt["config_dict"]["model"]["conv_dropout"] = ckpt["config_dict"]["model"]["atten_dropout"] = 0.0
            self.args = DotDict(ckpt["config_dict"])
            model = InferCFNaiveMelPE(self.args, ckpt["model"])
            model = model.to(device).to(self.dtype)
            model.eval()
            self.model = model

    @torch.no_grad()
    def __call__(self, audio, sr, threshold=0.05, p_len=None):
        if self.onnx: self.wav2mel = Wav2Mel(device=self.device, dtype=self.dtype)
        return (torch.as_tensor(self.model.run([self.model.get_outputs()[0].name], {self.model.get_inputs()[0].name: self.wav2mel(audio=audio[None, :], sample_rate=sr).to(self.dtype).detach().cpu().numpy(), self.model.get_inputs()[1].name: np.array(threshold, dtype=np.float32)})[0], dtype=self.dtype, device=self.device) if self.onnx else self.model.infer(audio[None, :], sr, threshold=threshold, f0_min=self.f0_min, f0_max=self.f0_max, output_interp_target_length=p_len))

class FCPE:
    def __init__(self, configs, model_path, hop_length=512, f0_min=50, f0_max=1100, dtype=torch.float32, device=None, sample_rate=16000, threshold=0.05, providers=None, onnx=False, legacy=False):
        self.model = FCPEInfer_LEGACY if legacy else FCPEInfer
        self.fcpe = self.model(configs, model_path, device=device, dtype=dtype, providers=providers, onnx=onnx, f0_min=f0_min, f0_max=f0_max)
        self.hop_length = hop_length
        self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
        self.threshold = threshold
        self.sample_rate = sample_rate
        self.dtype = dtype
        self.legacy = legacy

    def compute_f0(self, wav, p_len=None):
        x = torch.FloatTensor(wav).to(self.dtype).to(self.device)
        p_len = (x.shape[0] // self.hop_length) if p_len is None else p_len

        f0 = self.fcpe(x, sr=self.sample_rate, threshold=self.threshold, p_len=p_len)
        f0 = f0[:] if f0.dim() == 1 else f0[0, :, 0]

        if torch.all(f0 == 0): return f0.cpu().numpy() if p_len is None else np.zeros(p_len), (f0.cpu().numpy() if p_len is None else np.zeros(p_len))
        return f0.cpu().numpy()