File size: 24,540 Bytes
1e4a2ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 |
import os
import re
import sys
import shutil
import librosa
import datetime
import subprocess
import numpy as np
sys.path.append(os.getcwd())
from main.app.core.ui import gr_info, gr_warning, gr_error, process_output
from main.app.variables import logger, config, configs, translations, python
def convert(pitch, filter_radius, index_rate, rms_mix_rate, protect, hop_length, f0_method, input_path, output_path, pth_path, index_path, f0_autotune, clean_audio, clean_strength, export_format, embedder_model, resample_sr, split_audio, f0_autotune_strength, checkpointing, f0_onnx, embedders_mode, formant_shifting, formant_qfrency, formant_timbre, f0_file, proposal_pitch, proposal_pitch_threshold):
if config.debug_mode: subprocess.run([python, configs["convert_path"], "--pitch", str(pitch), "--filter_radius", str(filter_radius), "--index_rate", str(index_rate), "--rms_mix_rate", str(rms_mix_rate), "--protect", str(protect), "--hop_length", str(hop_length), "--f0_method", f0_method, "--input_path", input_path, "--output_path", output_path, "--pth_path", pth_path, "--index_path", index_path, "--f0_autotune", str(f0_autotune), "--clean_audio", str(clean_audio), "--clean_strength", str(clean_strength), "--export_format", export_format, "--embedder_model", embedder_model, "--resample_sr", str(resample_sr), "--split_audio", str(split_audio), "--f0_autotune_strength", str(f0_autotune_strength), "--checkpointing", str(checkpointing), "--f0_onnx", str(f0_onnx), "--embedders_mode", embedders_mode, "--formant_shifting", str(formant_shifting), "--formant_qfrency", str(formant_qfrency), "--formant_timbre", str(formant_timbre), "--f0_file", f0_file, "--proposal_pitch", str(proposal_pitch), "--proposal_pitch_threshold", str(proposal_pitch_threshold)])
else:
from main.inference.conversion.convert import run_convert_script
run_convert_script(pitch, filter_radius, index_rate, rms_mix_rate, protect, hop_length, f0_method, input_path, output_path, pth_path, index_path, f0_autotune, f0_autotune_strength, clean_audio, clean_strength, export_format, embedder_model, resample_sr, split_audio, checkpointing, f0_file, f0_onnx, embedders_mode, formant_shifting, formant_qfrency, formant_timbre, proposal_pitch, proposal_pitch_threshold)
def convert_audio(clean, autotune, use_audio, use_original, convert_backing, not_merge_backing, merge_instrument, pitch, clean_strength, model, index, index_rate, input, output, format, method, hybrid_method, hop_length, embedders, custom_embedders, resample_sr, filter_radius, rms_mix_rate, protect, split_audio, f0_autotune_strength, input_audio_name, checkpointing, onnx_f0_mode, formant_shifting, formant_qfrency, formant_timbre, f0_file, embedders_mode, proposal_pitch, proposal_pitch_threshold):
model_path = os.path.join(configs["weights_path"], model) if not os.path.exists(model) else model
return_none = [None]*6
return_none[5] = {"visible": True, "__type__": "update"}
if not use_audio:
if merge_instrument or not_merge_backing or convert_backing or use_original:
gr_warning(translations["turn_on_use_audio"])
return return_none
if use_original:
if convert_backing:
gr_warning(translations["turn_off_convert_backup"])
return return_none
elif not_merge_backing:
gr_warning(translations["turn_off_merge_backup"])
return return_none
if not model or not os.path.exists(model_path) or os.path.isdir(model_path) or not model.endswith((".pth", ".onnx")):
gr_warning(translations["provide_file"].format(filename=translations["model"]))
return return_none
f0method, embedder_model = (method if method != "hybrid" else hybrid_method), (embedders if embedders != "custom" else custom_embedders)
if use_audio:
output_audio = os.path.join(configs["audios_path"], input_audio_name)
from main.library.utils import pydub_load
def get_audio_file(label):
matching_files = [f for f in os.listdir(output_audio) if label in f]
if not matching_files: return translations["notfound"]
return os.path.join(output_audio, matching_files[0])
output_path = os.path.join(output_audio, f"Convert_Vocals.{format}")
output_backing = os.path.join(output_audio, f"Convert_Backing.{format}")
output_merge_backup = os.path.join(output_audio, f"Vocals+Backing.{format}")
output_merge_instrument = os.path.join(output_audio, f"Vocals+Instruments.{format}")
if os.path.exists(output_audio): os.makedirs(output_audio, exist_ok=True)
output_path = process_output(output_path)
if use_original:
original_vocal = get_audio_file('Original_Vocals_No_Reverb.')
if original_vocal == translations["notfound"]: original_vocal = get_audio_file('Original_Vocals.')
if original_vocal == translations["notfound"]:
gr_warning(translations["not_found_original_vocal"])
return return_none
input_path = original_vocal
else:
main_vocal = get_audio_file('Main_Vocals_No_Reverb.')
backing_vocal = get_audio_file('Backing_Vocals_No_Reverb.')
if main_vocal == translations["notfound"]: main_vocal = get_audio_file('Main_Vocals.')
if not not_merge_backing and backing_vocal == translations["notfound"]: backing_vocal = get_audio_file('Backing_Vocals.')
if main_vocal == translations["notfound"]:
gr_warning(translations["not_found_main_vocal"])
return return_none
if not not_merge_backing and backing_vocal == translations["notfound"]:
gr_warning(translations["not_found_backing_vocal"])
return return_none
input_path = main_vocal
backing_path = backing_vocal
gr_info(translations["convert_vocal"])
convert(pitch, filter_radius, index_rate, rms_mix_rate, protect, hop_length, f0method, input_path, output_path, model_path, index, autotune, clean, clean_strength, format, embedder_model, resample_sr, split_audio, f0_autotune_strength, checkpointing, onnx_f0_mode, embedders_mode, formant_shifting, formant_qfrency, formant_timbre, f0_file, proposal_pitch, proposal_pitch_threshold)
gr_info(translations["convert_success"])
if convert_backing:
output_backing = process_output(output_backing)
gr_info(translations["convert_backup"])
convert(pitch, filter_radius, index_rate, rms_mix_rate, protect, hop_length, f0method, backing_path, output_backing, model_path, index, autotune, clean, clean_strength, format, embedder_model, resample_sr, split_audio, f0_autotune_strength, checkpointing, onnx_f0_mode, embedders_mode, formant_shifting, formant_qfrency, formant_timbre, f0_file, proposal_pitch, proposal_pitch_threshold)
gr_info(translations["convert_backup_success"])
try:
if not not_merge_backing and not use_original:
backing_source = output_backing if convert_backing else backing_vocal
output_merge_backup = process_output(output_merge_backup)
gr_info(translations["merge_backup"])
pydub_load(output_path, volume=-4).overlay(pydub_load(backing_source, volume=-6)).export(output_merge_backup, format=format)
gr_info(translations["merge_success"])
if merge_instrument:
vocals = output_merge_backup if not not_merge_backing and not use_original else output_path
output_merge_instrument = process_output(output_merge_instrument)
gr_info(translations["merge_instruments_process"])
instruments = get_audio_file('Instruments.')
if instruments == translations["notfound"]:
gr_warning(translations["not_found_instruments"])
output_merge_instrument = None
else: pydub_load(instruments, volume=-7).overlay(pydub_load(vocals, volume=-4 if use_original else None)).export(output_merge_instrument, format=format)
gr_info(translations["merge_success"])
except:
return return_none
return [(None if use_original else output_path), output_backing, (None if not_merge_backing and use_original else output_merge_backup), (output_path if use_original else None), (output_merge_instrument if merge_instrument else None), {"visible": True, "__type__": "update"}]
else:
if not input or not os.path.exists(input) or os.path.isdir(input):
gr_warning(translations["input_not_valid"])
return return_none
if not output:
gr_warning(translations["output_not_valid"])
return return_none
output = output.replace("wav", format)
if os.path.isdir(input):
gr_info(translations["is_folder"])
if not [f for f in os.listdir(input) if f.lower().endswith(("wav", "mp3", "flac", "ogg", "opus", "m4a", "mp4", "aac", "alac", "wma", "aiff", "webm", "ac3"))]:
gr_warning(translations["not_found_in_folder"])
return return_none
gr_info(translations["batch_convert"])
output_dir = os.path.dirname(output) or output
convert(pitch, filter_radius, index_rate, rms_mix_rate, protect, hop_length, f0method, input, output_dir, model_path, index, autotune, clean, clean_strength, format, embedder_model, resample_sr, split_audio, f0_autotune_strength, checkpointing, onnx_f0_mode, embedders_mode, formant_shifting, formant_qfrency, formant_timbre, f0_file, proposal_pitch, proposal_pitch_threshold)
gr_info(translations["batch_convert_success"])
return return_none
else:
output_dir = os.path.dirname(output) or output
if not os.path.exists(output_dir): os.makedirs(output_dir, exist_ok=True)
output = process_output(output)
gr_info(translations["convert_vocal"])
convert(pitch, filter_radius, index_rate, rms_mix_rate, protect, hop_length, f0method, input, output, model_path, index, autotune, clean, clean_strength, format, embedder_model, resample_sr, split_audio, f0_autotune_strength, checkpointing, onnx_f0_mode, embedders_mode, formant_shifting, formant_qfrency, formant_timbre, f0_file, proposal_pitch, proposal_pitch_threshold)
gr_info(translations["convert_success"])
return_none[0] = output
return return_none
def convert_selection(clean, autotune, use_audio, use_original, convert_backing, not_merge_backing, merge_instrument, pitch, clean_strength, model, index, index_rate, input, output, format, method, hybrid_method, hop_length, embedders, custom_embedders, resample_sr, filter_radius, rms_mix_rate, protect, split_audio, f0_autotune_strength, checkpointing, onnx_f0_mode, formant_shifting, formant_qfrency, formant_timbre, f0_file, embedders_mode, proposal_pitch, proposal_pitch_threshold):
if use_audio:
gr_info(translations["search_separate"])
choice = [f for f in os.listdir(configs["audios_path"]) if os.path.isdir(os.path.join(configs["audios_path"], f))] if config.debug_mode else [f for f in os.listdir(configs["audios_path"]) if os.path.isdir(os.path.join(configs["audios_path"], f)) and any(file.lower().endswith((".wav", ".mp3", ".flac", ".ogg", ".opus", ".m4a", ".mp4", ".aac", ".alac", ".wma", ".aiff", ".webm", ".ac3")) for file in os.listdir(os.path.join(configs["audios_path"], f)))]
gr_info(translations["found_choice"].format(choice=len(choice)))
if len(choice) == 0:
gr_warning(translations["separator==0"])
return [{"choices": [], "value": "", "interactive": False, "visible": False, "__type__": "update"}, None, None, None, None, None, {"visible": True, "__type__": "update"}, {"visible": False, "__type__": "update"}]
elif len(choice) == 1:
convert_output = convert_audio(clean, autotune, use_audio, use_original, convert_backing, not_merge_backing, merge_instrument, pitch, clean_strength, model, index, index_rate, None, None, format, method, hybrid_method, hop_length, embedders, custom_embedders, resample_sr, filter_radius, rms_mix_rate, protect, split_audio, f0_autotune_strength, choice[0], checkpointing, onnx_f0_mode, formant_shifting, formant_qfrency, formant_timbre, f0_file, embedders_mode, proposal_pitch, proposal_pitch_threshold)
return [{"choices": [], "value": "", "interactive": False, "visible": False, "__type__": "update"}, convert_output[0], convert_output[1], convert_output[2], convert_output[3], convert_output[4], {"visible": True, "__type__": "update"}, {"visible": False, "__type__": "update"}]
else: return [{"choices": choice, "value": choice[0], "interactive": True, "visible": True, "__type__": "update"}, None, None, None, None, None, {"visible": False, "__type__": "update"}, {"visible": True, "__type__": "update"}]
else:
main_convert = convert_audio(clean, autotune, use_audio, use_original, convert_backing, not_merge_backing, merge_instrument, pitch, clean_strength, model, index, index_rate, input, output, format, method, hybrid_method, hop_length, embedders, custom_embedders, resample_sr, filter_radius, rms_mix_rate, protect, split_audio, f0_autotune_strength, None, checkpointing, onnx_f0_mode, formant_shifting, formant_qfrency, formant_timbre, f0_file, embedders_mode, proposal_pitch, proposal_pitch_threshold)
return [{"choices": [], "value": "", "interactive": False, "visible": False, "__type__": "update"}, main_convert[0], None, None, None, None, {"visible": True, "__type__": "update"}, {"visible": False, "__type__": "update"}]
def convert_with_whisper(num_spk, model_size, cleaner, clean_strength, autotune, f0_autotune_strength, checkpointing, model_1, model_2, model_index_1, model_index_2, pitch_1, pitch_2, index_strength_1, index_strength_2, export_format, input_audio, output_audio, onnx_f0_mode, method, hybrid_method, hop_length, embed_mode, embedders, custom_embedders, resample_sr, filter_radius, rms_mix_rate, protect, formant_shifting, formant_qfrency_1, formant_timbre_1, formant_qfrency_2, formant_timbre_2, proposal_pitch, proposal_pitch_threshold):
from pydub import AudioSegment
from sklearn.cluster import AgglomerativeClustering
from main.library.speaker_diarization.audio import Audio
from main.library.speaker_diarization.segment import Segment
from main.library.speaker_diarization.whisper import load_model
from main.library.utils import check_spk_diarization, pydub_load
from main.library.speaker_diarization.embedding import SpeechBrainPretrainedSpeakerEmbedding
check_spk_diarization(model_size)
model_pth_1, model_pth_2 = os.path.join(configs["weights_path"], model_1) if not os.path.exists(model_1) else model_1, os.path.join(configs["weights_path"], model_2) if not os.path.exists(model_2) else model_2
if (not model_1 or not os.path.exists(model_pth_1) or os.path.isdir(model_pth_1) or not model_pth_1.endswith((".pth", ".onnx"))) and (not model_2 or not os.path.exists(model_pth_2) or os.path.isdir(model_pth_2) or not model_pth_2.endswith((".pth", ".onnx"))):
gr_warning(translations["provide_file"].format(filename=translations["model"]))
return None
if not model_1: model_pth_1 = model_pth_2
if not model_2: model_pth_2 = model_pth_1
if not input_audio or not os.path.exists(input_audio) or os.path.isdir(input_audio):
gr_warning(translations["input_not_valid"])
return None
if not output_audio:
gr_warning(translations["output_not_valid"])
return None
output_audio = process_output(output_audio)
gr_info(translations["start_whisper"])
try:
audio = Audio()
embedding_model = SpeechBrainPretrainedSpeakerEmbedding(embedding=os.path.join(configs["speaker_diarization_path"], "models", "speechbrain"), device=config.device)
segments = load_model(model_size, device=config.device).transcribe(input_audio, fp16=configs.get("fp16", False), word_timestamps=True)["segments"]
y, sr = librosa.load(input_audio, sr=None)
duration = len(y) / sr
def segment_embedding(segment):
waveform, _ = audio.crop(input_audio, Segment(segment["start"], min(duration, segment["end"])))
return embedding_model(waveform.mean(dim=0, keepdim=True)[None] if waveform.shape[0] == 2 else waveform[None])
def time(secs):
return datetime.timedelta(seconds=round(secs))
def merge_audio(files_list, time_stamps, original_file_path, output_path, format):
def extract_number(filename):
match = re.search(r'_(\d+)', filename)
return int(match.group(1)) if match else 0
total_duration = len(pydub_load(original_file_path))
combined = AudioSegment.empty()
current_position = 0
for file, (start_i, end_i) in zip(sorted(files_list, key=extract_number), time_stamps):
if start_i > current_position: combined += AudioSegment.silent(duration=start_i - current_position)
combined += pydub_load(file)
current_position = end_i
if current_position < total_duration: combined += AudioSegment.silent(duration=total_duration - current_position)
combined.export(output_path, format=format)
return output_path
embeddings = np.zeros(shape=(len(segments), 192))
for i, segment in enumerate(segments):
embeddings[i] = segment_embedding(segment)
labels = AgglomerativeClustering(num_spk).fit(np.nan_to_num(embeddings)).labels_
for i in range(len(segments)):
segments[i]["speaker"] = 'SPEAKER ' + str(labels[i] + 1)
merged_segments, current_text = [], []
current_speaker, current_start = None, None
for i, segment in enumerate(segments):
speaker = segment["speaker"]
start_time = segment["start"]
text = segment["text"][1:]
if speaker == current_speaker:
current_text.append(text)
end_time = segment["end"]
else:
if current_speaker is not None: merged_segments.append({"speaker": current_speaker, "start": current_start, "end": end_time, "text": " ".join(current_text)})
current_speaker = speaker
current_start = start_time
current_text = [text]
end_time = segment["end"]
if current_speaker is not None: merged_segments.append({"speaker": current_speaker, "start": current_start, "end": end_time, "text": " ".join(current_text)})
gr_info(translations["whisper_done"])
x = ""
for segment in merged_segments:
x += f"\n{segment['speaker']} {str(time(segment['start']))} - {str(time(segment['end']))}\n"
x += segment["text"] + "\n"
logger.info(x)
gr_info(translations["process_audio"])
audio = pydub_load(input_audio)
output_folder = "audios_temp"
if os.path.exists(output_folder): shutil.rmtree(output_folder, ignore_errors=True)
for f in [output_folder, os.path.join(output_folder, "1"), os.path.join(output_folder, "2")]:
os.makedirs(f, exist_ok=True)
time_stamps, processed_segments = [], []
for i, segment in enumerate(merged_segments):
start_ms = int(segment["start"] * 1000)
end_ms = int(segment["end"] * 1000)
index = i + 1
segment_filename = os.path.join(output_folder, "1" if i % 2 == 1 else "2", f"segment_{index}.wav")
audio[start_ms:end_ms].export(segment_filename, format="wav")
processed_segments.append(os.path.join(output_folder, "1" if i % 2 == 1 else "2", f"segment_{index}_output.wav"))
time_stamps.append((start_ms, end_ms))
f0method, embedder_model = (method if method != "hybrid" else hybrid_method), (embedders if embedders != "custom" else custom_embedders)
gr_info(translations["process_done_start_convert"])
convert(pitch_1, filter_radius, index_strength_1, rms_mix_rate, protect, hop_length, f0method, os.path.join(output_folder, "1"), output_folder, model_pth_1, model_index_1, autotune, cleaner, clean_strength, "wav", embedder_model, resample_sr, False, f0_autotune_strength, checkpointing, onnx_f0_mode, embed_mode, formant_shifting, formant_qfrency_1, formant_timbre_1, "", proposal_pitch, proposal_pitch_threshold)
convert(pitch_2, filter_radius, index_strength_2, rms_mix_rate, protect, hop_length, f0method, os.path.join(output_folder, "2"), output_folder, model_pth_2, model_index_2, autotune, cleaner, clean_strength, "wav", embedder_model, resample_sr, False, f0_autotune_strength, checkpointing, onnx_f0_mode, embed_mode, formant_shifting, formant_qfrency_2, formant_timbre_2, "", proposal_pitch, proposal_pitch_threshold)
gr_info(translations["convert_success"])
return merge_audio(processed_segments, time_stamps, input_audio, output_audio.replace("wav", export_format), export_format)
except Exception as e:
gr_error(translations["error_occurred"].format(e=e))
import traceback
logger.debug(traceback.format_exc())
return None
finally:
if os.path.exists("audios_temp"): shutil.rmtree("audios_temp", ignore_errors=True)
def convert_tts(clean, autotune, pitch, clean_strength, model, index, index_rate, input, output, format, method, hybrid_method, hop_length, embedders, custom_embedders, resample_sr, filter_radius, rms_mix_rate, protect, split_audio, f0_autotune_strength, checkpointing, onnx_f0_mode, formant_shifting, formant_qfrency, formant_timbre, f0_file, embedders_mode, proposal_pitch, proposal_pitch_threshold):
model_path = os.path.join(configs["weights_path"], model) if not os.path.exists(model) else model
if not model_path or not os.path.exists(model_path) or os.path.isdir(model_path) or not model.endswith((".pth", ".onnx")):
gr_warning(translations["provide_file"].format(filename=translations["model"]))
return None
if not input or not os.path.exists(input):
gr_warning(translations["input_not_valid"])
return None
if os.path.isdir(input):
input_audio = [f for f in os.listdir(input) if "tts" in f and f.lower().endswith(("wav", "mp3", "flac", "ogg", "opus", "m4a", "mp4", "aac", "alac", "wma", "aiff", "webm", "ac3"))]
if not input_audio:
gr_warning(translations["not_found_in_folder"])
return None
input = os.path.join(input, input_audio[0])
if not output:
gr_warning(translations["output_not_valid"])
return None
output = output.replace("wav", format)
if os.path.isdir(output): output = os.path.join(output, f"tts.{format}")
output_dir = os.path.dirname(output)
if not os.path.exists(output_dir): os.makedirs(output_dir, exist_ok=True)
output = process_output(output)
f0method = method if method != "hybrid" else hybrid_method
embedder_model = embedders if embedders != "custom" else custom_embedders
gr_info(translations["convert_vocal"])
convert(pitch, filter_radius, index_rate, rms_mix_rate, protect, hop_length, f0method, input, output, model_path, index, autotune, clean, clean_strength, format, embedder_model, resample_sr, split_audio, f0_autotune_strength, checkpointing, onnx_f0_mode, embedders_mode, formant_shifting, formant_qfrency, formant_timbre, f0_file, proposal_pitch, proposal_pitch_threshold)
gr_info(translations["convert_success"])
return output |