Spaces:
Sleeping
Sleeping
Delete loan.py
Browse files
loan.py
DELETED
@@ -1,212 +0,0 @@
|
|
1 |
-
# -*- coding: utf-8 -*-
|
2 |
-
"""loan.py"""
|
3 |
-
|
4 |
-
# Import necessary libraries
|
5 |
-
import numpy as np
|
6 |
-
import pandas as pd
|
7 |
-
import seaborn as sns
|
8 |
-
import matplotlib.pyplot as plt
|
9 |
-
import warnings
|
10 |
-
from sklearn.preprocessing import OneHotEncoder, StandardScaler
|
11 |
-
from sklearn.compose import ColumnTransformer
|
12 |
-
from sklearn.pipeline import Pipeline
|
13 |
-
from sklearn.model_selection import train_test_split
|
14 |
-
from sklearn.linear_model import LogisticRegression
|
15 |
-
from imblearn.over_sampling import SMOTE
|
16 |
-
from sklearn.metrics import classification_report, confusion_matrix, roc_auc_score
|
17 |
-
import gradio as gr
|
18 |
-
from imblearn.pipeline import Pipeline as ImbPipeline
|
19 |
-
import joblib
|
20 |
-
from datasets import load_dataset # Import the Hugging Face dataset library
|
21 |
-
|
22 |
-
# Suppress specific FutureWarnings
|
23 |
-
warnings.simplefilter(action='ignore', category=FutureWarning)
|
24 |
-
|
25 |
-
# Load dataset directly from Hugging Face
|
26 |
-
dataset = load_dataset("AnguloM/loan_data")
|
27 |
-
|
28 |
-
# Access the train and test data
|
29 |
-
df_train = dataset['train']
|
30 |
-
|
31 |
-
|
32 |
-
# Convert dataset to pandas DataFrame
|
33 |
-
df_train = pd.DataFrame(df_train)
|
34 |
-
|
35 |
-
from sklearn.model_selection import train_test_split
|
36 |
-
|
37 |
-
df_train, df_test = train_test_split(df_train, test_size=0.2, random_state=42)
|
38 |
-
|
39 |
-
|
40 |
-
# Create a summary DataFrame with data types and non-null counts
|
41 |
-
info_df = pd.DataFrame({
|
42 |
-
"Column": df_train.columns,
|
43 |
-
"Data Type": df_train.dtypes,
|
44 |
-
"Non-Null Count": df_train.notnull().sum(),
|
45 |
-
"Total Count": len(df_train)
|
46 |
-
})
|
47 |
-
|
48 |
-
# Calculate the percentage of non-null values in each column
|
49 |
-
info_df['Non-Null Percentage'] = (info_df['Non-Null Count'] / info_df['Total Count'] * 100).round(2).astype(str) + '%'
|
50 |
-
|
51 |
-
# Style the table
|
52 |
-
info_df_styled = info_df.style.set_properties(**{'text-align': 'left'}).set_table_styles(
|
53 |
-
[{'selector': 'th', 'props': [('background-color', '#d9edf7'), ('color', '#31708f'), ('font-weight', 'bold')]}]
|
54 |
-
)
|
55 |
-
|
56 |
-
# Apply background gradient only to numerical columns
|
57 |
-
info_df_styled = info_df_styled.background_gradient(subset=['Non-Null Count', 'Total Count'], cmap="Oranges")
|
58 |
-
|
59 |
-
# Create a widget to display the styled table
|
60 |
-
table_widget = widgets.Output()
|
61 |
-
with table_widget:
|
62 |
-
display(info_df_styled)
|
63 |
-
|
64 |
-
# Widget for the missing values message
|
65 |
-
message_widget = widgets.Output()
|
66 |
-
with message_widget:
|
67 |
-
print(f"\033[1;31mMissing values detected in any columns:\033[0m\n{df_train.isnull().sum()}")
|
68 |
-
|
69 |
-
# Display both widgets (table and missing values message) side by side
|
70 |
-
widgets.HBox([table_widget, message_widget])
|
71 |
-
|
72 |
-
# Convert relevant columns to categorical if necessary
|
73 |
-
df_train['not.fully.paid'] = df_train['not.fully.paid'].astype('category')
|
74 |
-
|
75 |
-
# Select only numeric columns for correlation matrix calculation
|
76 |
-
df_numeric = df_train.select_dtypes(include=[float, int])
|
77 |
-
|
78 |
-
# Create a 1x2 grid for the plots
|
79 |
-
plt.figure(figsize=(12, 6))
|
80 |
-
|
81 |
-
# Create subplots for the correlation matrix and target distribution
|
82 |
-
fig, axes = plt.subplots(1, 2, figsize=(14, 6))
|
83 |
-
|
84 |
-
# Plot Correlation Matrix
|
85 |
-
sns.heatmap(df_numeric.corr(), annot=True, cmap='coolwarm', ax=axes[0], fmt='.2f')
|
86 |
-
axes[0].set_title('Correlation Matrix')
|
87 |
-
|
88 |
-
# Plot Distribution of Loan Repayment Status (Target Variable)
|
89 |
-
sns.countplot(x='not.fully.paid', data=df_train, ax=axes[1])
|
90 |
-
axes[1].set_title('Distribution of Loan Repayment Status')
|
91 |
-
|
92 |
-
# Show the plots
|
93 |
-
plt.tight_layout() # Adjusts the layout to avoid overlapping
|
94 |
-
plt.show()
|
95 |
-
|
96 |
-
# OneHotEncoding for categorical columns and scaling for numeric columns
|
97 |
-
# Prepare data for training
|
98 |
-
data = df_train.copy()
|
99 |
-
|
100 |
-
# Separate features (X) and target (y)
|
101 |
-
X = data.drop('credit.policy', axis=1) # Drop the target column
|
102 |
-
y = data['credit.policy'] # Target variable
|
103 |
-
|
104 |
-
# Split the data into training (80%) and testing (20%) sets
|
105 |
-
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
106 |
-
|
107 |
-
# Preprocessing pipeline (scaling numeric features and encoding categorical features)
|
108 |
-
preprocessor = ColumnTransformer(
|
109 |
-
transformers=[
|
110 |
-
('num', StandardScaler(), ['int.rate', 'installment', 'log.annual.inc', 'dti', 'fico',
|
111 |
-
'days.with.cr.line', 'revol.bal', 'revol.util', 'inq.last.6mths',
|
112 |
-
'delinq.2yrs', 'pub.rec']),
|
113 |
-
('cat', OneHotEncoder(), ['purpose']) # Ensure 'purpose' is included in categorical transformations
|
114 |
-
]
|
115 |
-
)
|
116 |
-
|
117 |
-
# Create an imbalanced-learn pipeline that includes SMOTE and Logistic Regression
|
118 |
-
imb_model_pipeline = ImbPipeline(steps=[
|
119 |
-
('preprocessor', preprocessor), # First, preprocess the data (scale numeric, encode categorical)
|
120 |
-
('smote', SMOTE(random_state=42, sampling_strategy=0.5)), # Apply SMOTE to balance the dataset
|
121 |
-
('classifier', LogisticRegression(max_iter=1000000)) # Logistic Regression classifier
|
122 |
-
])
|
123 |
-
|
124 |
-
# Train the model with the full pipeline (preprocessing + SMOTE + model training)
|
125 |
-
imb_model_pipeline.fit(X_train, y_train)
|
126 |
-
|
127 |
-
# Make predictions on the test data
|
128 |
-
y_pred = imb_model_pipeline.predict(X_test)
|
129 |
-
y_pred_proba = imb_model_pipeline.predict_proba(X_test)[:, 1] # Get probabilities for the positive class
|
130 |
-
|
131 |
-
# Adjust the decision threshold to improve recall of the positive class
|
132 |
-
threshold = 0.3
|
133 |
-
y_pred_adjusted = (y_pred_proba >= threshold).astype(int)
|
134 |
-
|
135 |
-
# Evaluate the model using classification report
|
136 |
-
classification_rep = classification_report(y_test, y_pred_adjusted, output_dict=True)
|
137 |
-
|
138 |
-
# Convert the classification report to a DataFrame for display as a table with styles
|
139 |
-
classification_df = pd.DataFrame(classification_rep).transpose()
|
140 |
-
classification_df_styled = classification_df.style.set_properties(**{'text-align': 'center'}).set_table_styles(
|
141 |
-
[{'selector': 'th', 'props': [('background-color', '#d9edf7'), ('color', '#31708f'), ('font-weight', 'bold')]}]
|
142 |
-
)
|
143 |
-
|
144 |
-
# Display the classification report as a styled table in a widget
|
145 |
-
table_widget = widgets.Output()
|
146 |
-
with table_widget:
|
147 |
-
display(classification_df_styled)
|
148 |
-
|
149 |
-
# Calculate the AUC-ROC score
|
150 |
-
auc_roc = roc_auc_score(y_test, y_pred_proba)
|
151 |
-
|
152 |
-
# Widget for the AUC-ROC
|
153 |
-
auc_widget = widgets.Output()
|
154 |
-
with auc_widget:
|
155 |
-
print("\033[1;31mAUC-ROC:\033[0m", f"{auc_roc:.4f}")
|
156 |
-
|
157 |
-
# Display both widgets (table and AUC-ROC message) side by side
|
158 |
-
display(widgets.VBox([table_widget, auc_widget]))
|
159 |
-
|
160 |
-
# Display the confusion matrix
|
161 |
-
cm = confusion_matrix(y_test, y_pred_adjusted)
|
162 |
-
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
|
163 |
-
plt.title("Confusion Matrix")
|
164 |
-
plt.xlabel("Predicted")
|
165 |
-
plt.ylabel("Actual")
|
166 |
-
plt.show()
|
167 |
-
|
168 |
-
from huggingface_hub import hf_hub_download
|
169 |
-
import joblib
|
170 |
-
|
171 |
-
|
172 |
-
model_path = hf_hub_download(repo_id="AnguloM/LoanSmart_Predict_Loan_Approval_with_Confidence", filename="loan_approval_pipeline.pkl")
|
173 |
-
|
174 |
-
|
175 |
-
pipeline = joblib.load(model_path)
|
176 |
-
# Prediction function
|
177 |
-
def predict_approval(int_rate, installment, log_annual_inc, dti, fico,
|
178 |
-
days_with_cr_line, revol_bal, revol_util, inq_last_6mths,
|
179 |
-
delinq_2yrs, pub_rec, purpose):
|
180 |
-
# Prepare the input as a DataFrame
|
181 |
-
input_data = pd.DataFrame([[int_rate, installment, log_annual_inc, dti, fico,
|
182 |
-
days_with_cr_line, revol_bal, revol_util,
|
183 |
-
inq_last_6mths, delinq_2yrs, pub_rec, purpose]],
|
184 |
-
columns=['int.rate', 'installment', 'log.annual.inc',
|
185 |
-
'dti', 'fico', 'days.with.cr.line', 'revol.bal',
|
186 |
-
'revol.util', 'inq.last.6mths', 'delinq.2yrs',
|
187 |
-
'pub.rec', 'purpose'])
|
188 |
-
# Make loan approval prediction
|
189 |
-
result = pipeline.predict(input_data)
|
190 |
-
return result[0]
|
191 |
-
|
192 |
-
|
193 |
-
# Create input components for the Gradio interface
|
194 |
-
inputs = [
|
195 |
-
gr.Slider(0.0, 25.0, step=0.1, label="Interest Rate (%)"),
|
196 |
-
gr.Slider(0.0, 1000.0, step=10.0, label="Installment Amount"),
|
197 |
-
gr.Slider(0.0, 15.0, step=0.1, label="Log of Annual Income"),
|
198 |
-
gr.Slider(0.0, 50.0, step=0.1, label="Debt-to-Income Ratio"),
|
199 |
-
gr.Slider(300, 850, step=1, label="FICO Credit Score"),
|
200 |
-
gr.Slider(0.0, 50000.0, step=100.0, label="Days with Credit Line"),
|
201 |
-
gr.Slider(0.0, 100000.0, step=500.0, label="Revolving Balance"),
|
202 |
-
gr.Slider(0.0, 150.0, step=0.1, label="Revolving Utilization (%)"),
|
203 |
-
gr.Slider(0, 10, step=1, label="Recent Inquiries (Last 6 Months)"),
|
204 |
-
gr.Slider(0, 10, step=1, label="Delinquencies in Last 2 Years"),
|
205 |
-
gr.Slider(0, 5, step=1, label="Public Records"),
|
206 |
-
gr.Dropdown(["credit_card", "debt_consolidation", "educational",
|
207 |
-
"home_improvement", "major_purchase", "small_business",
|
208 |
-
"other"], label="Loan Purpose")
|
209 |
-
]
|
210 |
-
|
211 |
-
# Create the Gradio interface for loan approval prediction
|
212 |
-
gr.Interface(fn=predict_approval, inputs=inputs, outputs="text").launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|