Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
# Load the model and tokenizer | |
MODEL_NAME = "deepseek-ai/deepseek-coder-1.3b-instruct" | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.float16, device_map="auto") | |
# Function to generate responses | |
def generate_response(prompt): | |
inputs = tokenizer(prompt, return_tensors="pt").to("cuda") | |
input_ids = inputs["input_ids"] | |
attention_mask = inputs["attention_mask"] | |
outputs = model.generate(input_ids=input_ids, attention_mask=attention_mask, max_new_tokens=200, pad_token_id=tokenizer.eos_token_id) | |
return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Create a Gradio UI | |
iface = gr.Interface( | |
fn=generate_response, | |
inputs=gr.Textbox(label="Enter your prompt"), | |
outputs=gr.Textbox(label="Generated Response"), | |
title="DeepSeek Coder Chatbot", | |
description="A chatbot powered by DeepSeek Coder 1.3B" | |
) | |
iface.launch() |