Spaces:
Build error
Build error
import argparse | |
import os.path as osp | |
import warnings | |
import numpy as np | |
import onnx | |
import onnxruntime as rt | |
import torch | |
from mmcv import DictAction | |
from mmdet.core import (build_model_from_cfg, generate_inputs_and_wrap_model, | |
preprocess_example_input) | |
def pytorch2onnx(config_path, | |
checkpoint_path, | |
input_img, | |
input_shape, | |
opset_version=11, | |
show=False, | |
output_file='tmp.onnx', | |
verify=False, | |
normalize_cfg=None, | |
dataset='coco', | |
test_img=None, | |
do_simplify=False, | |
cfg_options=None): | |
input_config = { | |
'input_shape': input_shape, | |
'input_path': input_img, | |
'normalize_cfg': normalize_cfg | |
} | |
# prepare original model and meta for verifying the onnx model | |
orig_model = build_model_from_cfg( | |
config_path, checkpoint_path, cfg_options=cfg_options) | |
one_img, one_meta = preprocess_example_input(input_config) | |
model, tensor_data = generate_inputs_and_wrap_model( | |
config_path, checkpoint_path, input_config, cfg_options=cfg_options) | |
output_names = ['boxes'] | |
if model.with_bbox: | |
output_names.append('labels') | |
if model.with_mask: | |
output_names.append('masks') | |
torch.onnx.export( | |
model, | |
tensor_data, | |
output_file, | |
input_names=['input'], | |
output_names=output_names, | |
export_params=True, | |
keep_initializers_as_inputs=True, | |
do_constant_folding=True, | |
verbose=show, | |
opset_version=opset_version) | |
model.forward = orig_model.forward | |
# simplify onnx model | |
if do_simplify: | |
from mmdet import digit_version | |
import mmcv | |
min_required_version = '1.2.5' | |
assert digit_version(mmcv.__version__) >= digit_version( | |
min_required_version | |
), f'Requires to install mmcv>={min_required_version}' | |
from mmcv.onnx.simplify import simplify | |
input_dic = {'input': one_img.detach().cpu().numpy()} | |
_ = simplify(output_file, [input_dic], output_file) | |
print(f'Successfully exported ONNX model: {output_file}') | |
if verify: | |
from mmdet.core import get_classes, bbox2result | |
from mmdet.apis import show_result_pyplot | |
ort_custom_op_path = '' | |
try: | |
from mmcv.ops import get_onnxruntime_op_path | |
ort_custom_op_path = get_onnxruntime_op_path() | |
except (ImportError, ModuleNotFoundError): | |
warnings.warn('If input model has custom op from mmcv, \ | |
you may have to build mmcv with ONNXRuntime from source.') | |
model.CLASSES = get_classes(dataset) | |
num_classes = len(model.CLASSES) | |
# check by onnx | |
onnx_model = onnx.load(output_file) | |
onnx.checker.check_model(onnx_model) | |
if test_img is not None: | |
input_config['input_path'] = test_img | |
one_img, one_meta = preprocess_example_input(input_config) | |
tensor_data = [one_img] | |
# check the numerical value | |
# get pytorch output | |
pytorch_results = model(tensor_data, [[one_meta]], return_loss=False) | |
pytorch_results = pytorch_results[0] | |
# get onnx output | |
input_all = [node.name for node in onnx_model.graph.input] | |
input_initializer = [ | |
node.name for node in onnx_model.graph.initializer | |
] | |
net_feed_input = list(set(input_all) - set(input_initializer)) | |
assert (len(net_feed_input) == 1) | |
session_options = rt.SessionOptions() | |
# register custom op for onnxruntime | |
if osp.exists(ort_custom_op_path): | |
session_options.register_custom_ops_library(ort_custom_op_path) | |
sess = rt.InferenceSession(output_file, session_options) | |
onnx_outputs = sess.run(None, | |
{net_feed_input[0]: one_img.detach().numpy()}) | |
output_names = [_.name for _ in sess.get_outputs()] | |
output_shapes = [_.shape for _ in onnx_outputs] | |
print(f'onnxruntime output names: {output_names}, \ | |
output shapes: {output_shapes}') | |
nrof_out = len(onnx_outputs) | |
assert nrof_out > 0, 'Must have output' | |
with_mask = nrof_out == 3 | |
if nrof_out == 1: | |
onnx_results = onnx_outputs[0] | |
else: | |
det_bboxes, det_labels = onnx_outputs[:2] | |
onnx_results = bbox2result(det_bboxes, det_labels, num_classes) | |
if with_mask: | |
segm_results = onnx_outputs[2].squeeze(1) | |
cls_segms = [[] for _ in range(num_classes)] | |
for i in range(det_bboxes.shape[0]): | |
cls_segms[det_labels[i]].append(segm_results[i]) | |
onnx_results = (onnx_results, cls_segms) | |
# visualize predictions | |
if show: | |
show_result_pyplot( | |
model, one_meta['show_img'], pytorch_results, title='Pytorch') | |
show_result_pyplot( | |
model, one_meta['show_img'], onnx_results, title='ONNX') | |
# compare a part of result | |
if with_mask: | |
compare_pairs = list(zip(onnx_results, pytorch_results)) | |
else: | |
compare_pairs = [(onnx_results, pytorch_results)] | |
for onnx_res, pytorch_res in compare_pairs: | |
for o_res, p_res in zip(onnx_res, pytorch_res): | |
np.testing.assert_allclose( | |
o_res, | |
p_res, | |
rtol=1e-03, | |
atol=1e-05, | |
) | |
print('The numerical values are the same between Pytorch and ONNX') | |
def parse_args(): | |
parser = argparse.ArgumentParser( | |
description='Convert MMDetection models to ONNX') | |
parser.add_argument('config', help='test config file path') | |
parser.add_argument('checkpoint', help='checkpoint file') | |
parser.add_argument('--input-img', type=str, help='Images for input') | |
parser.add_argument('--show', action='store_true', help='show onnx graph') | |
parser.add_argument('--output-file', type=str, default='tmp.onnx') | |
parser.add_argument('--opset-version', type=int, default=11) | |
parser.add_argument( | |
'--test-img', type=str, default=None, help='Images for test') | |
parser.add_argument( | |
'--dataset', type=str, default='coco', help='Dataset name') | |
parser.add_argument( | |
'--verify', | |
action='store_true', | |
help='verify the onnx model output against pytorch output') | |
parser.add_argument( | |
'--simplify', | |
action='store_true', | |
help='Whether to simplify onnx model.') | |
parser.add_argument( | |
'--shape', | |
type=int, | |
nargs='+', | |
default=[800, 1216], | |
help='input image size') | |
parser.add_argument( | |
'--mean', | |
type=float, | |
nargs='+', | |
default=[123.675, 116.28, 103.53], | |
help='mean value used for preprocess input data') | |
parser.add_argument( | |
'--std', | |
type=float, | |
nargs='+', | |
default=[58.395, 57.12, 57.375], | |
help='variance value used for preprocess input data') | |
parser.add_argument( | |
'--cfg-options', | |
nargs='+', | |
action=DictAction, | |
help='override some settings in the used config, the key-value pair ' | |
'in xxx=yyy format will be merged into config file. If the value to ' | |
'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' | |
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' | |
'Note that the quotation marks are necessary and that no white space ' | |
'is allowed.') | |
args = parser.parse_args() | |
return args | |
if __name__ == '__main__': | |
args = parse_args() | |
assert args.opset_version == 11, 'MMDet only support opset 11 now' | |
if not args.input_img: | |
args.input_img = osp.join( | |
osp.dirname(__file__), '../../tests/data/color.jpg') | |
if len(args.shape) == 1: | |
input_shape = (1, 3, args.shape[0], args.shape[0]) | |
elif len(args.shape) == 2: | |
input_shape = (1, 3) + tuple(args.shape) | |
else: | |
raise ValueError('invalid input shape') | |
assert len(args.mean) == 3 | |
assert len(args.std) == 3 | |
normalize_cfg = {'mean': args.mean, 'std': args.std} | |
# convert model to onnx file | |
pytorch2onnx( | |
args.config, | |
args.checkpoint, | |
args.input_img, | |
input_shape, | |
opset_version=args.opset_version, | |
show=args.show, | |
output_file=args.output_file, | |
verify=args.verify, | |
normalize_cfg=normalize_cfg, | |
dataset=args.dataset, | |
test_img=args.test_img, | |
do_simplify=args.simplify, | |
cfg_options=args.cfg_options) | |