SakuraD's picture
update
cdfecf8
import argparse
import os.path as osp
import warnings
import numpy as np
import onnx
import onnxruntime as rt
import torch
from mmcv import DictAction
from mmdet.core import (build_model_from_cfg, generate_inputs_and_wrap_model,
preprocess_example_input)
def pytorch2onnx(config_path,
checkpoint_path,
input_img,
input_shape,
opset_version=11,
show=False,
output_file='tmp.onnx',
verify=False,
normalize_cfg=None,
dataset='coco',
test_img=None,
do_simplify=False,
cfg_options=None):
input_config = {
'input_shape': input_shape,
'input_path': input_img,
'normalize_cfg': normalize_cfg
}
# prepare original model and meta for verifying the onnx model
orig_model = build_model_from_cfg(
config_path, checkpoint_path, cfg_options=cfg_options)
one_img, one_meta = preprocess_example_input(input_config)
model, tensor_data = generate_inputs_and_wrap_model(
config_path, checkpoint_path, input_config, cfg_options=cfg_options)
output_names = ['boxes']
if model.with_bbox:
output_names.append('labels')
if model.with_mask:
output_names.append('masks')
torch.onnx.export(
model,
tensor_data,
output_file,
input_names=['input'],
output_names=output_names,
export_params=True,
keep_initializers_as_inputs=True,
do_constant_folding=True,
verbose=show,
opset_version=opset_version)
model.forward = orig_model.forward
# simplify onnx model
if do_simplify:
from mmdet import digit_version
import mmcv
min_required_version = '1.2.5'
assert digit_version(mmcv.__version__) >= digit_version(
min_required_version
), f'Requires to install mmcv>={min_required_version}'
from mmcv.onnx.simplify import simplify
input_dic = {'input': one_img.detach().cpu().numpy()}
_ = simplify(output_file, [input_dic], output_file)
print(f'Successfully exported ONNX model: {output_file}')
if verify:
from mmdet.core import get_classes, bbox2result
from mmdet.apis import show_result_pyplot
ort_custom_op_path = ''
try:
from mmcv.ops import get_onnxruntime_op_path
ort_custom_op_path = get_onnxruntime_op_path()
except (ImportError, ModuleNotFoundError):
warnings.warn('If input model has custom op from mmcv, \
you may have to build mmcv with ONNXRuntime from source.')
model.CLASSES = get_classes(dataset)
num_classes = len(model.CLASSES)
# check by onnx
onnx_model = onnx.load(output_file)
onnx.checker.check_model(onnx_model)
if test_img is not None:
input_config['input_path'] = test_img
one_img, one_meta = preprocess_example_input(input_config)
tensor_data = [one_img]
# check the numerical value
# get pytorch output
pytorch_results = model(tensor_data, [[one_meta]], return_loss=False)
pytorch_results = pytorch_results[0]
# get onnx output
input_all = [node.name for node in onnx_model.graph.input]
input_initializer = [
node.name for node in onnx_model.graph.initializer
]
net_feed_input = list(set(input_all) - set(input_initializer))
assert (len(net_feed_input) == 1)
session_options = rt.SessionOptions()
# register custom op for onnxruntime
if osp.exists(ort_custom_op_path):
session_options.register_custom_ops_library(ort_custom_op_path)
sess = rt.InferenceSession(output_file, session_options)
onnx_outputs = sess.run(None,
{net_feed_input[0]: one_img.detach().numpy()})
output_names = [_.name for _ in sess.get_outputs()]
output_shapes = [_.shape for _ in onnx_outputs]
print(f'onnxruntime output names: {output_names}, \
output shapes: {output_shapes}')
nrof_out = len(onnx_outputs)
assert nrof_out > 0, 'Must have output'
with_mask = nrof_out == 3
if nrof_out == 1:
onnx_results = onnx_outputs[0]
else:
det_bboxes, det_labels = onnx_outputs[:2]
onnx_results = bbox2result(det_bboxes, det_labels, num_classes)
if with_mask:
segm_results = onnx_outputs[2].squeeze(1)
cls_segms = [[] for _ in range(num_classes)]
for i in range(det_bboxes.shape[0]):
cls_segms[det_labels[i]].append(segm_results[i])
onnx_results = (onnx_results, cls_segms)
# visualize predictions
if show:
show_result_pyplot(
model, one_meta['show_img'], pytorch_results, title='Pytorch')
show_result_pyplot(
model, one_meta['show_img'], onnx_results, title='ONNX')
# compare a part of result
if with_mask:
compare_pairs = list(zip(onnx_results, pytorch_results))
else:
compare_pairs = [(onnx_results, pytorch_results)]
for onnx_res, pytorch_res in compare_pairs:
for o_res, p_res in zip(onnx_res, pytorch_res):
np.testing.assert_allclose(
o_res,
p_res,
rtol=1e-03,
atol=1e-05,
)
print('The numerical values are the same between Pytorch and ONNX')
def parse_args():
parser = argparse.ArgumentParser(
description='Convert MMDetection models to ONNX')
parser.add_argument('config', help='test config file path')
parser.add_argument('checkpoint', help='checkpoint file')
parser.add_argument('--input-img', type=str, help='Images for input')
parser.add_argument('--show', action='store_true', help='show onnx graph')
parser.add_argument('--output-file', type=str, default='tmp.onnx')
parser.add_argument('--opset-version', type=int, default=11)
parser.add_argument(
'--test-img', type=str, default=None, help='Images for test')
parser.add_argument(
'--dataset', type=str, default='coco', help='Dataset name')
parser.add_argument(
'--verify',
action='store_true',
help='verify the onnx model output against pytorch output')
parser.add_argument(
'--simplify',
action='store_true',
help='Whether to simplify onnx model.')
parser.add_argument(
'--shape',
type=int,
nargs='+',
default=[800, 1216],
help='input image size')
parser.add_argument(
'--mean',
type=float,
nargs='+',
default=[123.675, 116.28, 103.53],
help='mean value used for preprocess input data')
parser.add_argument(
'--std',
type=float,
nargs='+',
default=[58.395, 57.12, 57.375],
help='variance value used for preprocess input data')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
assert args.opset_version == 11, 'MMDet only support opset 11 now'
if not args.input_img:
args.input_img = osp.join(
osp.dirname(__file__), '../../tests/data/color.jpg')
if len(args.shape) == 1:
input_shape = (1, 3, args.shape[0], args.shape[0])
elif len(args.shape) == 2:
input_shape = (1, 3) + tuple(args.shape)
else:
raise ValueError('invalid input shape')
assert len(args.mean) == 3
assert len(args.std) == 3
normalize_cfg = {'mean': args.mean, 'std': args.std}
# convert model to onnx file
pytorch2onnx(
args.config,
args.checkpoint,
args.input_img,
input_shape,
opset_version=args.opset_version,
show=args.show,
output_file=args.output_file,
verify=args.verify,
normalize_cfg=normalize_cfg,
dataset=args.dataset,
test_img=args.test_img,
do_simplify=args.simplify,
cfg_options=args.cfg_options)