Spaces:
Build error
Build error
import copy | |
import warnings | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from mmcv import ConfigDict | |
from mmcv.cnn import normal_init | |
from mmcv.ops import batched_nms | |
from ..builder import HEADS | |
from .anchor_head import AnchorHead | |
from .rpn_test_mixin import RPNTestMixin | |
class RPNHead(RPNTestMixin, AnchorHead): | |
"""RPN head. | |
Args: | |
in_channels (int): Number of channels in the input feature map. | |
""" # noqa: W605 | |
def __init__(self, in_channels, **kwargs): | |
super(RPNHead, self).__init__(1, in_channels, **kwargs) | |
def _init_layers(self): | |
"""Initialize layers of the head.""" | |
self.rpn_conv = nn.Conv2d( | |
self.in_channels, self.feat_channels, 3, padding=1) | |
self.rpn_cls = nn.Conv2d(self.feat_channels, | |
self.num_anchors * self.cls_out_channels, 1) | |
self.rpn_reg = nn.Conv2d(self.feat_channels, self.num_anchors * 4, 1) | |
def init_weights(self): | |
"""Initialize weights of the head.""" | |
normal_init(self.rpn_conv, std=0.01) | |
normal_init(self.rpn_cls, std=0.01) | |
normal_init(self.rpn_reg, std=0.01) | |
def forward_single(self, x): | |
"""Forward feature map of a single scale level.""" | |
x = self.rpn_conv(x) | |
x = F.relu(x, inplace=True) | |
rpn_cls_score = self.rpn_cls(x) | |
rpn_bbox_pred = self.rpn_reg(x) | |
return rpn_cls_score, rpn_bbox_pred | |
def loss(self, | |
cls_scores, | |
bbox_preds, | |
gt_bboxes, | |
img_metas, | |
gt_bboxes_ignore=None): | |
"""Compute losses of the head. | |
Args: | |
cls_scores (list[Tensor]): Box scores for each scale level | |
Has shape (N, num_anchors * num_classes, H, W) | |
bbox_preds (list[Tensor]): Box energies / deltas for each scale | |
level with shape (N, num_anchors * 4, H, W) | |
gt_bboxes (list[Tensor]): Ground truth bboxes for each image with | |
shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. | |
img_metas (list[dict]): Meta information of each image, e.g., | |
image size, scaling factor, etc. | |
gt_bboxes_ignore (None | list[Tensor]): specify which bounding | |
boxes can be ignored when computing the loss. | |
Returns: | |
dict[str, Tensor]: A dictionary of loss components. | |
""" | |
losses = super(RPNHead, self).loss( | |
cls_scores, | |
bbox_preds, | |
gt_bboxes, | |
None, | |
img_metas, | |
gt_bboxes_ignore=gt_bboxes_ignore) | |
return dict( | |
loss_rpn_cls=losses['loss_cls'], loss_rpn_bbox=losses['loss_bbox']) | |
def _get_bboxes(self, | |
cls_scores, | |
bbox_preds, | |
mlvl_anchors, | |
img_shapes, | |
scale_factors, | |
cfg, | |
rescale=False): | |
"""Transform outputs for a single batch item into bbox predictions. | |
Args: | |
cls_scores (list[Tensor]): Box scores for each scale level | |
Has shape (N, num_anchors * num_classes, H, W). | |
bbox_preds (list[Tensor]): Box energies / deltas for each scale | |
level with shape (N, num_anchors * 4, H, W). | |
mlvl_anchors (list[Tensor]): Box reference for each scale level | |
with shape (num_total_anchors, 4). | |
img_shapes (list[tuple[int]]): Shape of the input image, | |
(height, width, 3). | |
scale_factors (list[ndarray]): Scale factor of the image arange as | |
(w_scale, h_scale, w_scale, h_scale). | |
cfg (mmcv.Config): Test / postprocessing configuration, | |
if None, test_cfg would be used. | |
rescale (bool): If True, return boxes in original image space. | |
Returns: | |
list[tuple[Tensor, Tensor]]: Each item in result_list is 2-tuple. | |
The first item is an (n, 5) tensor, where the first 4 columns | |
are bounding box positions (tl_x, tl_y, br_x, br_y) and the | |
5-th column is a score between 0 and 1. The second item is a | |
(n,) tensor where each item is the predicted class labelof the | |
corresponding box. | |
""" | |
cfg = self.test_cfg if cfg is None else cfg | |
cfg = copy.deepcopy(cfg) | |
# bboxes from different level should be independent during NMS, | |
# level_ids are used as labels for batched NMS to separate them | |
level_ids = [] | |
mlvl_scores = [] | |
mlvl_bbox_preds = [] | |
mlvl_valid_anchors = [] | |
batch_size = cls_scores[0].shape[0] | |
nms_pre_tensor = torch.tensor( | |
cfg.nms_pre, device=cls_scores[0].device, dtype=torch.long) | |
for idx in range(len(cls_scores)): | |
rpn_cls_score = cls_scores[idx] | |
rpn_bbox_pred = bbox_preds[idx] | |
assert rpn_cls_score.size()[-2:] == rpn_bbox_pred.size()[-2:] | |
rpn_cls_score = rpn_cls_score.permute(0, 2, 3, 1) | |
if self.use_sigmoid_cls: | |
rpn_cls_score = rpn_cls_score.reshape(batch_size, -1) | |
scores = rpn_cls_score.sigmoid() | |
else: | |
rpn_cls_score = rpn_cls_score.reshape(batch_size, -1, 2) | |
# We set FG labels to [0, num_class-1] and BG label to | |
# num_class in RPN head since mmdet v2.5, which is unified to | |
# be consistent with other head since mmdet v2.0. In mmdet v2.0 | |
# to v2.4 we keep BG label as 0 and FG label as 1 in rpn head. | |
scores = rpn_cls_score.softmax(-1)[..., 0] | |
rpn_bbox_pred = rpn_bbox_pred.permute(0, 2, 3, 1).reshape( | |
batch_size, -1, 4) | |
anchors = mlvl_anchors[idx] | |
anchors = anchors.expand_as(rpn_bbox_pred) | |
if nms_pre_tensor > 0: | |
# sort is faster than topk | |
# _, topk_inds = scores.topk(cfg.nms_pre) | |
# keep topk op for dynamic k in onnx model | |
if torch.onnx.is_in_onnx_export(): | |
# sort op will be converted to TopK in onnx | |
# and k<=3480 in TensorRT | |
scores_shape = torch._shape_as_tensor(scores) | |
nms_pre = torch.where(scores_shape[1] < nms_pre_tensor, | |
scores_shape[1], nms_pre_tensor) | |
_, topk_inds = scores.topk(nms_pre) | |
batch_inds = torch.arange(batch_size).view( | |
-1, 1).expand_as(topk_inds) | |
scores = scores[batch_inds, topk_inds] | |
rpn_bbox_pred = rpn_bbox_pred[batch_inds, topk_inds, :] | |
anchors = anchors[batch_inds, topk_inds, :] | |
elif scores.shape[-1] > cfg.nms_pre: | |
ranked_scores, rank_inds = scores.sort(descending=True) | |
topk_inds = rank_inds[:, :cfg.nms_pre] | |
scores = ranked_scores[:, :cfg.nms_pre] | |
batch_inds = torch.arange(batch_size).view( | |
-1, 1).expand_as(topk_inds) | |
rpn_bbox_pred = rpn_bbox_pred[batch_inds, topk_inds, :] | |
anchors = anchors[batch_inds, topk_inds, :] | |
mlvl_scores.append(scores) | |
mlvl_bbox_preds.append(rpn_bbox_pred) | |
mlvl_valid_anchors.append(anchors) | |
level_ids.append( | |
scores.new_full(( | |
batch_size, | |
scores.size(1), | |
), | |
idx, | |
dtype=torch.long)) | |
batch_mlvl_scores = torch.cat(mlvl_scores, dim=1) | |
batch_mlvl_anchors = torch.cat(mlvl_valid_anchors, dim=1) | |
batch_mlvl_rpn_bbox_pred = torch.cat(mlvl_bbox_preds, dim=1) | |
batch_mlvl_proposals = self.bbox_coder.decode( | |
batch_mlvl_anchors, batch_mlvl_rpn_bbox_pred, max_shape=img_shapes) | |
batch_mlvl_ids = torch.cat(level_ids, dim=1) | |
# deprecate arguments warning | |
if 'nms' not in cfg or 'max_num' in cfg or 'nms_thr' in cfg: | |
warnings.warn( | |
'In rpn_proposal or test_cfg, ' | |
'nms_thr has been moved to a dict named nms as ' | |
'iou_threshold, max_num has been renamed as max_per_img, ' | |
'name of original arguments and the way to specify ' | |
'iou_threshold of NMS will be deprecated.') | |
if 'nms' not in cfg: | |
cfg.nms = ConfigDict(dict(type='nms', iou_threshold=cfg.nms_thr)) | |
if 'max_num' in cfg: | |
if 'max_per_img' in cfg: | |
assert cfg.max_num == cfg.max_per_img, f'You ' \ | |
f'set max_num and ' \ | |
f'max_per_img at the same time, but get {cfg.max_num} ' \ | |
f'and {cfg.max_per_img} respectively' \ | |
'Please delete max_num which will be deprecated.' | |
else: | |
cfg.max_per_img = cfg.max_num | |
if 'nms_thr' in cfg: | |
assert cfg.nms.iou_threshold == cfg.nms_thr, f'You set' \ | |
f' iou_threshold in nms and ' \ | |
f'nms_thr at the same time, but get' \ | |
f' {cfg.nms.iou_threshold} and {cfg.nms_thr}' \ | |
f' respectively. Please delete the nms_thr ' \ | |
f'which will be deprecated.' | |
result_list = [] | |
for (mlvl_proposals, mlvl_scores, | |
mlvl_ids) in zip(batch_mlvl_proposals, batch_mlvl_scores, | |
batch_mlvl_ids): | |
# Skip nonzero op while exporting to ONNX | |
if cfg.min_bbox_size > 0 and (not torch.onnx.is_in_onnx_export()): | |
w = mlvl_proposals[:, 2] - mlvl_proposals[:, 0] | |
h = mlvl_proposals[:, 3] - mlvl_proposals[:, 1] | |
valid_ind = torch.nonzero( | |
(w >= cfg.min_bbox_size) | |
& (h >= cfg.min_bbox_size), | |
as_tuple=False).squeeze() | |
if valid_ind.sum().item() != len(mlvl_proposals): | |
mlvl_proposals = mlvl_proposals[valid_ind, :] | |
mlvl_scores = mlvl_scores[valid_ind] | |
mlvl_ids = mlvl_ids[valid_ind] | |
dets, keep = batched_nms(mlvl_proposals, mlvl_scores, mlvl_ids, | |
cfg.nms) | |
result_list.append(dets[:cfg.max_per_img]) | |
return result_list | |