File size: 7,910 Bytes
cdfecf8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import torch
import torch.nn as nn
import torch.nn.functional as F

from ..builder import LOSSES
from .utils import weight_reduce_loss


def cross_entropy(pred,
                  label,
                  weight=None,
                  reduction='mean',
                  avg_factor=None,
                  class_weight=None):
    """Calculate the CrossEntropy loss.

    Args:
        pred (torch.Tensor): The prediction with shape (N, C), C is the number
            of classes.
        label (torch.Tensor): The learning label of the prediction.
        weight (torch.Tensor, optional): Sample-wise loss weight.
        reduction (str, optional): The method used to reduce the loss.
        avg_factor (int, optional): Average factor that is used to average
            the loss. Defaults to None.
        class_weight (list[float], optional): The weight for each class.

    Returns:
        torch.Tensor: The calculated loss
    """
    # element-wise losses
    loss = F.cross_entropy(pred, label, weight=class_weight, reduction='none')

    # apply weights and do the reduction
    if weight is not None:
        weight = weight.float()
    loss = weight_reduce_loss(
        loss, weight=weight, reduction=reduction, avg_factor=avg_factor)

    return loss


def _expand_onehot_labels(labels, label_weights, label_channels):
    bin_labels = labels.new_full((labels.size(0), label_channels), 0)
    inds = torch.nonzero(
        (labels >= 0) & (labels < label_channels), as_tuple=False).squeeze()
    if inds.numel() > 0:
        bin_labels[inds, labels[inds]] = 1

    if label_weights is None:
        bin_label_weights = None
    else:
        bin_label_weights = label_weights.view(-1, 1).expand(
            label_weights.size(0), label_channels)

    return bin_labels, bin_label_weights


def binary_cross_entropy(pred,
                         label,
                         weight=None,
                         reduction='mean',
                         avg_factor=None,
                         class_weight=None):
    """Calculate the binary CrossEntropy loss.

    Args:
        pred (torch.Tensor): The prediction with shape (N, 1).
        label (torch.Tensor): The learning label of the prediction.
        weight (torch.Tensor, optional): Sample-wise loss weight.
        reduction (str, optional): The method used to reduce the loss.
            Options are "none", "mean" and "sum".
        avg_factor (int, optional): Average factor that is used to average
            the loss. Defaults to None.
        class_weight (list[float], optional): The weight for each class.

    Returns:
        torch.Tensor: The calculated loss
    """
    if pred.dim() != label.dim():
        label, weight = _expand_onehot_labels(label, weight, pred.size(-1))

    # weighted element-wise losses
    if weight is not None:
        weight = weight.float()
    loss = F.binary_cross_entropy_with_logits(
        pred, label.float(), pos_weight=class_weight, reduction='none')
    # do the reduction for the weighted loss
    loss = weight_reduce_loss(
        loss, weight, reduction=reduction, avg_factor=avg_factor)

    return loss


def mask_cross_entropy(pred,
                       target,
                       label,
                       reduction='mean',
                       avg_factor=None,
                       class_weight=None):
    """Calculate the CrossEntropy loss for masks.

    Args:
        pred (torch.Tensor): The prediction with shape (N, C, *), C is the
            number of classes. The trailing * indicates arbitrary shape.
        target (torch.Tensor): The learning label of the prediction.
        label (torch.Tensor): ``label`` indicates the class label of the mask
            corresponding object. This will be used to select the mask in the
            of the class which the object belongs to when the mask prediction
            if not class-agnostic.
        reduction (str, optional): The method used to reduce the loss.
            Options are "none", "mean" and "sum".
        avg_factor (int, optional): Average factor that is used to average
            the loss. Defaults to None.
        class_weight (list[float], optional): The weight for each class.

    Returns:
        torch.Tensor: The calculated loss

    Example:
        >>> N, C = 3, 11
        >>> H, W = 2, 2
        >>> pred = torch.randn(N, C, H, W) * 1000
        >>> target = torch.rand(N, H, W)
        >>> label = torch.randint(0, C, size=(N,))
        >>> reduction = 'mean'
        >>> avg_factor = None
        >>> class_weights = None
        >>> loss = mask_cross_entropy(pred, target, label, reduction,
        >>>                           avg_factor, class_weights)
        >>> assert loss.shape == (1,)
    """
    # TODO: handle these two reserved arguments
    assert reduction == 'mean' and avg_factor is None
    num_rois = pred.size()[0]
    inds = torch.arange(0, num_rois, dtype=torch.long, device=pred.device)
    pred_slice = pred[inds, label].squeeze(1)
    return F.binary_cross_entropy_with_logits(
        pred_slice, target, weight=class_weight, reduction='mean')[None]


@LOSSES.register_module()
class CrossEntropyLoss(nn.Module):

    def __init__(self,
                 use_sigmoid=False,
                 use_mask=False,
                 reduction='mean',
                 class_weight=None,
                 loss_weight=1.0):
        """CrossEntropyLoss.

        Args:
            use_sigmoid (bool, optional): Whether the prediction uses sigmoid
                of softmax. Defaults to False.
            use_mask (bool, optional): Whether to use mask cross entropy loss.
                Defaults to False.
            reduction (str, optional): . Defaults to 'mean'.
                Options are "none", "mean" and "sum".
            class_weight (list[float], optional): Weight of each class.
                Defaults to None.
            loss_weight (float, optional): Weight of the loss. Defaults to 1.0.
        """
        super(CrossEntropyLoss, self).__init__()
        assert (use_sigmoid is False) or (use_mask is False)
        self.use_sigmoid = use_sigmoid
        self.use_mask = use_mask
        self.reduction = reduction
        self.loss_weight = loss_weight
        self.class_weight = class_weight

        if self.use_sigmoid:
            self.cls_criterion = binary_cross_entropy
        elif self.use_mask:
            self.cls_criterion = mask_cross_entropy
        else:
            self.cls_criterion = cross_entropy

    def forward(self,
                cls_score,
                label,
                weight=None,
                avg_factor=None,
                reduction_override=None,
                **kwargs):
        """Forward function.

        Args:
            cls_score (torch.Tensor): The prediction.
            label (torch.Tensor): The learning label of the prediction.
            weight (torch.Tensor, optional): Sample-wise loss weight.
            avg_factor (int, optional): Average factor that is used to average
                the loss. Defaults to None.
            reduction (str, optional): The method used to reduce the loss.
                Options are "none", "mean" and "sum".
        Returns:
            torch.Tensor: The calculated loss
        """
        assert reduction_override in (None, 'none', 'mean', 'sum')
        reduction = (
            reduction_override if reduction_override else self.reduction)
        if self.class_weight is not None:
            class_weight = cls_score.new_tensor(
                self.class_weight, device=cls_score.device)
        else:
            class_weight = None
        loss_cls = self.loss_weight * self.cls_criterion(
            cls_score,
            label,
            weight,
            class_weight=class_weight,
            reduction=reduction,
            avg_factor=avg_factor,
            **kwargs)
        return loss_cls